>

CADE

MIND What?

-

’ mongo)

Humongous

Because it can store lots and lots of data

>

CADE .
MIND How it works

Collections

Documents

Schemaless!

>

ACADE
MIND JSON (BSON) Data Format
{
"name": ""Max",
"age': 29,
"address":
{

"city": "Munich"
j
"hobbies": [
{ "name": "Cooking" 1},
{ "name": "Sports" }

ACADE
MIND

id: 1
id: 2

id: 3

BSON Data Structure

llnqmell ||M0null

ACADE
MIND

Relations

Relational Data needs to be merged

Kind of...

ACADE
MIND MongoDB Ecosystem

MongoDB Database

Self-Managed /
Enterprise

rmmEmmmmmsEmmEmmmmm—— I ----------------------
i CloudManager/ |

OpsManager

Atlas (Cloud) Mobile

Compass

Bl Connectors

MongoDB Charts

-!!CI\DE

MIND Working with MongoDB
Frontend Backend Drivers
(Ul) (Server)

~
MongoDB Storage ‘
Queries Server Engine 4_>‘||

Java

File/ Data

Communicate
Access

MongoDB Shell

Playground, Administration

>

CADE
MIND A Closer Look
Data
Read + Write Data to
Files (slow)
MongoDB N Storage
Server Engine
Memory

Read + Write Data in
Memory (fast)

ACADE
MIND

Introduction

N Basics & Basic CRUD

Data Schema &
Relations

Working with the Shell

Using Compass

Outline

CRUD Deep Dive - Read

CRUD Deep Dive -
Update

CRUD Deep Dive -
Delete

Using Indexes

Working with Geospatial

CRUD Deep Dive -
Create

Data

The Aggregation
Framework

i

Working with Numeric
Data

Security &
Authentication

Performance, Fault
Tolerance & Deployment

Transactions

From Shell to Drivers

MongoDB Stitch

ACADE o .
MIND Using MongoDB Drivers

MongoDB Server (Database)

Your Application

ACADE

MIND How To Get The Most Out Of The Course

Watch the Videos

Pause & Code Along

Do the Assignments

Dive into the Official Docs +
Google

Ask + Answer in the Q&A Section

ACADE
MIND

Document & CRUD Basics

Working with the Database

ACADE

MIND What's Inside This Module?

Basics about Collections & Documents

Basic Data Types

Performing CRUD Operations

>

CADE o
MIND Databases, Collections, Documents

Collection Collection “

Document
Document

A

v

Document

Document

Document Document

Created Implicitly

>

CADE

MIND JSON

{ This is called a “Field” or
"name": "Max", j[———___ “Property” of the JSON
"age'": |29, document. Multiple Fields
"isInstructor": true), are separated by commas
"hobbies'": |[Key Value Fields” consist of a “Key”

_ "Sports" (or “name”) and “Value”
Surroundlr.]g .curly P . ¢ part. "Key and Value are
braces delimit the "Cooking" separated by a colon.

JSON document]
b)
"address":
"street": "My Street 5",
"city" : "Munich" Values can be strings (e.g.
} “Max”), numbers (e.g. 29),
} booleans (e.g. true), arrays

([...]) and other documents
(also called objects; { ... })

>

CADE
MIND JSON vs BSON
JSON BSON
{
"name" : "Max", MOﬂgODB .
||age||: 29 Drivers > Blnory Data
}

Extends JSON Types (e.g. more
detailed Number Types)

Efficient Storage

]CADE

MIND CRUD Operations & MongoDB
User
t
<Code>

MongoDB Driver Bl Connector / Shell Shell

Read

Create, Read, Update, Delete Create, Read, Update, Delete

MongoDB Server

Collection A Collection B

{4 {41

ACADE

MIND CRUD Operations
Create Update
insertOne(data, options) updateOne(filter, data, options)
insertMany(data, options) updateMany (filter, data, options)

replaceOne(filter, data, options)

find(filter, options) deleteOne(filter, options)

findOne(filter, options) deleteMany(filter, options)

ACADE
MIND

Example #1: Flight Data

Flight

Create

{

Updot{::>

s

{ .

"departureAirport":

llMUCIl ,

"arrivalAirport": "SFO",

"aircraft": "Airbus A380",

"distance": 12000,
"intercontinental":

}

true

Delete

Read

ACADE .
MIND Unique IDs

You MUST have an _id

MongoDB creates an Objectld() for you

You can set any other Value

]CADE

MIND Embedded Documents

Up to 100 Levels
of Nesting

Max. 16mb /
document

]CADE

Array of
Embedded
Documents

Arrays can hold ANY Data

Jj 1 —

>

CADE
MIND Cursors

[{ 3, {3, o1 Cursor Object

Cycle Through Results

ACADE . .
MIND Projection

N

||_-id||: H...ll,
Ilnamell: "MaX",
"age'": 29,

"job": "dinstructor"

= v

CADE

update() vs updateOne() vs updateMany()

update()

Overwrite by default

updateOne()

Error without $set (or
other update operators)

updateMany()

Use $set to patch values

Error without $set (or
other update operators)

Use $set to patch values

Update all identified
elements

Use $set to patch values

Update first identified
element

i)

Update all identified
elements

i)

Use these!

ACADE .
MIND Example #2: Patient Data

"firstName": "Max",

"lastName": "Schwarzmueller",

"age'": 29,

"history": [
{ "disease": "cold", "treatment": .. },
{ .}

]

+

ACADE
MIND Tasks

Insert 3 patient records with at least 1 history entry per patient

Update patient data of 1 patient with new age, name and history entry

Find all patients who are older than 30 (or a value of your choice)
Delete all patients who got a cold as a disease

3

ACADE
MIND Module Summary

Databases, Collections, Documents CRUD Operations

= A Database holds multiple Collections CRUD = Create, Read, Update, Delete

Whe.re SCe1e (CelEEnel Eel e el = MongoDB offers multiple CRUD operations for
multiple Documents : :
: single-document and bulk actions (e.g.
= Databases and Collections are created . :
o : insertOne(), insertMany(), ...)
lazily” (i.e. when a Document is :
: » Some methods require an argument (e.g.
inserted))) .
= A Document can’t directly be inserted INECTEINE(, GHIErs Clem § (e:g. wingij)
Y = find() returns a cursor, NOT a list of documents!

into a Database, you need to use a = Use filters to find specific documents
Collection!

Document Structure Retrieving Data

Each document needs a unique ID (and
gets one by default)

= You may have embedded documents
and array fields

= Use filters and operators (e.g. $gt) to limit the
number of documents you retrieve

» Use projection to limit the set of fields you retrieve

ACADE
MIND

Data Schemas & Data Modelling

Storing your Data Correctly

ACADE

MIND What's Inside This Module?

Understanding Document Schemas &

Data Types

Modelling Relations

Schema Validation

ACADE
MIND Schema-less Or Not?

Isn’t MongoDB all about having NO data Schemas?

MongoDB enforces no schemas! Documents don’t have to use

the same schema inside of one collection

-!!CI\DE

MIND To Schema Or Not To Schema

{ { {

"title": "Book", "title": "Book", "title": "Book",
"price": 12.99 "price": 12.99 "price": 12.99
¥ by }

Very Different! Extra Data Full Equality

{
{"name"° "Bottle" Bl Bottle”, {”title”' "Bottle"
"ava'iléble'“ trué - 599 ! rice”: 5.99 ,
| "available": true P -

ACADE
MIND

Data Types

Boolean

Number

Integer (int32)

NumberLong (int64)

NumberDecimal

Objectld

ISODate

———

Embedded Document

i

ACADE

MIND Data Schemas & Data Modelling

Which Data does my App need User Information, Product
or generate? Information, Orders, ...

.
Where do | need my Data: List Page, Orders Page

Which kind of Data or Welcome Page: Product
Information do | want to display? Names; Products Page: ...

How often do | fetch my data? For every page reload

How often do | write or change Orders => Often
my data? Product Data => Rarely

ACADE

MIND Data Schemas & Data Modelling

Goal: Store Data in the Format you need in
Fetching a lot? your Frontend! Don’t run complex
transformation queries!

ACADE

MIND Relations - Options
Nested / Embedded Documents
Lots of data duplication!
. S

userName: 'max',

age: 29,

address: {
street: 'Second Street',
city: '"New York'

}

ACADE N .
MIND Example #1 - Patient <-> Disease Summary

Patient A

Patient B

Patient C

y N A S
A

ACADE
MIND Example #2 - Person <-> Car

Person A

Person B < >

Person C

a S

>

CADE
MIND Example #3 - Thread <-> Answers

Question Thread A > Answer 1

“One thread has many answers, one answer Answer 2

belongs to one question thread.”

Answer 2

>

CADE . og o
MIND Example #4 - City <-> Citizens

:

“One city has many citizens, one citizen
belongs to one city.”

Citizen 1

v

]CADE

mino Example #5 - Customers <-> Products (Orders)

Customer A > Product 1

“One customer has many products (via Product 2
orders), a product belongs to many
customers.”

Customer B Product 3

Customer C Product 4

Product 5

>

CADE

MIND Example #6 - Books <-> Authors
N
“One book has many authors, an author Author 2

belongs to many books.”

Author 3

Author 4

Author 5

ACADE o .
MIND Relations - Options

Nested / Embedded Documents

Group data together logically

Great for data that belongs together and is
not really overlapping with other data

Avoid super-deep nesting (100+ levels) or
extremely long arrays (16mb size limit per
document)

-!!CI\DE

MIND Joining with Slookup

{

userName: 'max',
favBooks: [|'idl'|, 'id2']

}

{ Books
— _id: 'id1l',

name: 'Lord of the Rings 1'

}

>

ACADE

MIND Example Project: A Blog

Server-side rendered
Views, SPA, Mobile App

Create Post Edit Post Delete Post Fetch Posts Fetch Post Comment

App Server

<Your Code>

PHP NET Node.js

MongoDB Driver

MongoDB Server

Database

>

©MIND Schema Validation

Collection Rejected!

Validation Schema

HCMiND Schema Validation

validationLevel

Which documents get validated?

|:> All inserts & updates
All inserts & updates

moderate
to correct documents

bypassDocumentValidation()

ACADE

mino Data Modelling & Structuring - Things to Consider

In which Format will you fetch your Data?

How often will you fetch and change your Data?

How much data will you save (and how big is it)?

How is your Data related?

Will Duplicates hurt you (=> many Updates)?

Will you hit Data/ Storage Limits?

ACADE
MIND Module Summary

Modelling Schemas Modelling Relations

= Schemas should be modelled based on | | = Two options: Embedded documents or references

your application needs » Use embedded documents if you got one-to-one
= Important factors are: Read and write or one-to-many relationships and no app or data

frequency, relations, amount (and size) size reason to split

of data .

Use references if data amount/ size or application
needs require it or for many-to-many relations

» Exceptions are always possible => Keep your app
Schema Validation requirements in mind!

= You can define rules to validate inserts
and update before writing to the
database

= Choose your validation level and action
based on your application
requirements

ACADE
MIND

Working with Shell & Server

Beyond Start & Stop

ACADE

MIND What's Inside This Module?

Start MongoDB Server as Process &

Service

Configuring Database & Log Path (and

Fixing Issues

ACADE
MIND

Diving Deeper Into CREATE

A Closer Look at Creating & Importing Documents

ACADE

MIND What's Inside This Module?

Document Creation Methods (CREATE)

Importing Documents

ACADE

MIND REATE Documents

insertOne () db.collectionName.insertOne({field: "value"})

insertMany () db.collectionName.insertMany ([

{field: "value"},
{field: "value"}])

insert() db.collectionName.insert()

mongoimport

>

CADE]
MIND WriteConcern

MongoDB Server
(mongod)

Client (e.g. Shell) Storage Engine

e.g. insertOne()

Data on
Disk

Journal
("Todos")

{ w: 1, wtimeout: 200, j: true}

ACADE e u o o ”
MIND What is “Atomicity”?

Operation (e.g. insertOne())
r Error Ea—

MongoDB CRUD Operations are Atomic on the Document Level (including Embedded

Documents)

ACADE
MIND Tasks

Insert multiple companies (company data of your choice) into a collection
— both with insertOne() and insertMany()

Deliberately insert duplicate ID data and “fix” failing additions with

unordered inserts

Write data for a new company with both journaling being guaranteed and
not being guaranteed

ACADE
MIND Module Summary

insertOne(), insertMany() Ordered Insertes

= You can insert documents with .
insertOne() (one document at a time)
or insertMany/() (multiple documents)

= insert() also exists but it's not .
recommended to use it anymore — it
also doesn’t return the inserted ids

By default, when using insertMany(), inserts are
ordered — that means, that the inserting process
stops if an error occurs

You can change this by switching to “unordered
inserts” — your inserting process will then
continue, even if errors occurred

= |n both cases, no successful inserts (before the

error) will be rolled back
WriteConcern

» Data should be stored and you can
control the “level of guarantee” of that
to happen with the writeConcern
option

= Choose the option value based on your
app requirements

ACADE
MIND

EADing Documents with Operators

Accessing the Required Data Efficiently

ACADE

MIND What's Inside This Module?

Methods, Filters & Operators

Query Selectors (READ)

Projection Operators (READ)

>

Methods, Filters & Operators

ACADE
MIND

Access . :

current Access_thls Apply this
database collection

db H myCollection find(

Apply this

db H myCollection find(

Equality/ Single Value

>

>

CADE
MIND Operators
Read Update

Query & Projection Update Query Modifiers Aggregation

Query Selectors Fields

Projection Operators Arrays

]CADE

MIND How Operators Impact our Data
Query Operator Locate Data @ $eq
L Modify data @
Projection Operator - $

Modify + add @ :
Update Operator additional data $inc

ACADE

MIND Query Selectors & Projection Operators
Comparison Evaluation
Logical Array
Element Comments

/D
. 4;0%
Geospatial o%g%/

ACADE
MIND Tasks

Import the attached data into a new database (e.g. boxOffice) and
collection (e.g. movieStarts)

Search all movies that have a rating higher than 9.2 and a runtime lower
than 100 minutes

Search all movies that have a genre of “drama” or “action”

Search all movies where visitors exceeded expectedVisitors

ACADE
MIND Tasks

Import the attached data file into a new collection (e.g. exmoviestarts) in

the boxOffice database

Find all movies with exactly two genres
Find all movies which aired in 2018

2

3

Find all movies which have ratings greater than 8 but lower than 10

ACADE .
MIND Understanding Cursors

| 4
Client (Cursor) < | Mongz?dijseger/

Request Batch #1

Request Batch #2

ACADE
MIND

Tasks

For this assignment, we'll work on the “extended boxoffice” dataset
(which was imported in the previous assignment)

Filter for any data of your choice (e.g. all data) and make sure to only
include title + visitors in your result data.

Search for all movies that have an entry of 10 in their ratings array and
return just that array entry (inside of the array) in the result data

Repeat step 3) but return all “action” genre entries instead

ACADE

MIND Module Summary
= You can read documents with find() » find() returns a cursor to allow you to efficiently
and findOne() retrieve data step by step (instead of fetching all
= find() returns a cursor which allows the documents in one step)
you to fetch data step-by-step * You can use a cursor to move through the
= Both find() and findOne() take a filter documer)ts o
(optional) to narrow down the set of = sort(), skip() and limit() can be used to control the
documents they return order, portion and quantity of the retrieved results
= Filters can use a variety of query
documents are retrieved

» Projection allows you to control which fields are
returned in your result set

= You can include fields (field: 1) and exclude them
(field: 0)

» For arrays, special projection operators help you
return the right field data

ACADE
MIND

Understanding Document UPDATESs

Because we Always need the Latest Information

ACADE

MIND What's Inside This Module?

Document Updating Operator (UPDATE)

Updating Fields

Updating Arrays

>

CADE
MIND Operators
Read Update

Query & Projection Update Query Modifiers Aggregation

Query Selectors Fields

Projection Operators Arrays

Bitwise

]CADE

MIND How Operators Impact our Data
Query Operator Locate Data @ $eq
Projection Operator Ee1p dqto @ $elemMatch
presentation

Modify + add @
Update Operator additional data $rename

>

CADE
MIND Update Operators
Fields $currentDate $mul

Operators Spush Spop

Modifiers Sposition Sslice

ACADE
MIND Tasks

Create a new collection (“sports”) and upsert two new documents into it
(with these fields: “title”, “requiresTeam”)

Update all documents which do require a team by adding a new field with
the minimum amount of players required

Update all documents that require a team by increasing the number of
required players by 10

ACADE
MIND Module Summary

updateOne() & updateMany() Update Operators

= You can use updateOne() and
updateMany() to update one or more
documents in a collection

= You specify a filter (query selector)
with the same operators you know
from find()

= The second argument then describes
the update (e.g. via $set or other
update operators)

* You can update fields with a broad variety of field
update operators like $set, $inc, $min etc

» [f you need to work on arrays, take advantage of
the shortcuts ($, $[] and $[<identifier>] +
arrayFilters)

= Also use array update operators like $push or
$pop to efficiently add or remove elements to or
from arrays

Replacing Documents

= Even though it was not covered again,
you also learned about replaceOne()
earlier in the course — you can use that
if you need to entirely replace a doc

ACADE
MIND

ELETE Documents

Sometimes we have to Get Rid of Data

ACADE

MIND What's Inside This Module?

Document Deletion Methods (DELETE)

ACADE
MIND

IndeXxes

Retrieving Data Efficiently

ACADE

MIND What's Inside This Module?

What are Indexes?

Different Types of Indexes

Using & Optimizing Indexes

ACADE

Products

{..}
{..}
{..}
{..}
{..}
{..}

Why Indexes?

db.products.find({seller: '"Max"})

Z
<
O
0))
—
_
O
@)

No Index

Scan ALL documents,

then filter

Directly “jump” to
filtered documents

IXSCAN

O,
e/
./

ACADE
MIND

insert

—>

Don’t Use Too Many Indexes!

Products Collection

s

_id name age hobbies
I 1
Index ALL fields for ALL
collections for best
performance, right?
—
] t

Update all Indexes!

>

CADE
MIND Index Types
Ordered field {name: 1}
Compound Multiple, combined ordered fields {name: 1, age: -1}
Multikey Ordered array values { hobbies: 1}
Ordered text fragments { description: "text” }
Geospatial Ordered geodata { location: "2d" }

A MIND Index Config

Custom Name

Unique

Partial

Sparse

>

CADE

MIND Query Diagnosis & Query Planning

explain()

A 4
“queryPlanner”

Show Summary for
Executed Query +
Winning Plan

“executionStats”

Show Detailed Summary
for Executed Query +
Winning Plan + Possibly
Rejected Plans

v
“allPlansExecution”

Show Detailed Summary
for Executed Query +
Winning Plan + Winning
Plan Decision Process

ACADE o o) H
MIND Efficient Queries & Covered Queries

Milliseconds Process Time

IXSCAN typically beats COLLSCAN

of Keys (in Index)
=SelnllEe

Covered Query!

of Documents Examined

of Documents Returned

>

ACADE

MIND “Winning Plans’

— Approach 1 Approach 2

Cleared after certain amount of inserts, db restart etc

Winning Plan

Approach 3

_____ Az

Cached

>

“MinD Clearing the Winning Plan from Cache

Stored Forever?

Write Threshold Index is Rebuilt Other Indexes are MongoDB Server is
(currently 1,000) Added or Removed Restarted

>

“MIND Understanding "text” Indexes

This product is a must-buy for all fans of modern fiction!

product must buy fans modern fiction

Stopwords (e.g. “a”) are eliminated!

T Mino Building Indexes

Collection is locked during
index creation

Faster

ACADE
MIND Module Summary

What and Why? Query Diagnosis & Planning

= |ndexes allow you to retrieve data more efficiently = Use explain() to understand how
(if used correctly) because your queries only have MongoDB will execute your queries
to look at a subset of all documents = This allows you to optimize both your
= You can use single-field, compound, multi-key queries and indexes

(array) and text indexes

» |ndexes don’t come for free, they will slow down Index Ot
your writes RE RIEIS

= You can also create TTL, unique or
partial indexes

» For text indexes, weights and a
default_language can be assigned

Queries & Sorting

= |ndexes can be used for both queries and efficient
sorting

= Compound indexes can be used as a whole orin a
“left-to-right” (prefix) manner (e.g. only consider
the “name” of the “name-age” compound index)

ACADE
MIND

Geospatial Queries

Finding Places

ACADE

MIND What's Inside This Module?

Storing Geospatial Data in GeoJSON

Querying Geospatial Data

ACADE
MIND Tasks

Pick 3 Points on Google Maps and store them in a collection

Pick a point and find the nearest points within a min and max distance

Pick an area and see which points (that are stored in your collection) it
contains

Store at least one area in a different collection

Pick a point and find out which areas in your collection contain that point

ACADE
MIND Module Summary

Storing Geospatial Data Geospatial Queries

=Y t tial dat tt ther dat
ino;osu;)(rjeogjr?]sea?csla ata next to your other data « $near, $geoWithin and $geolntersects
' : t you very far
= Geospatial data has to follow the special cle _ _ _
Geo)SON format — and respect the types = Geospatial queries work with GeoJSON
supported by MongoDB data

= Don't forget that the coordinates are [longitude,
latitude], not the other way around!

Geospatial Indexes

= You can add an index to geospatial data:
“2dsphere”

= Some operations ($near) require such an index

ACADE
MIND

Using the Aggregation Framework

Retrieving Data Efficiently & In a Structured Way

>

CADE . “ o ”
MIND What is the “Aggregation Framework"?

Collection

{ Smatch }

Every stage receives
the output of the
previous stage

{ $group }

{ $project }

Output (List of
Documents)

AlCADE . e
MIND Pipeline Stages

Check official docs

ACADE .
MIND Sgroup vs $Sproject

Sum, Count, Average, Build Array

]CADE

sunwind

$unwind

>

A

CADE

MIND Sskip + Slimit + Ssort

The Order Matters!
BN T

ACADE
MIND Stext

Do a Text Index Search

Has to be the First Pipeline
Stage!

s

ACADE . o o e o o
MIND Aggregation Pipeline Optimization

MongoDB automatically optimizes for you!

ACADE

MIND Module Summary

= There are plenty of available stages = The most important stages are $match, $group,
and operators you can choose from $project, $sort and $unwind — you'll work with

= Stages define the different steps your these a lot
data is funneled through = Whilst there are some common behaviors

= Each stage receives the output of the between find() filters + projection and $match +
last stage as input $project, the aggregation stages generally are

= Operators can be used inside of stages more flexible
to transform, limit or re-calculate data

ACADE
MIND

Working with Numeric Data

More Complex Than You Might Think

]CADE

MIND Integers, Longs, Doubles

Integers (int32) Longs (int64) Doubles (64bit)
Numbers with Numbers with
Only full Numbers Only full Numbers Decimal Places Decimal Places

“High Precision

Doubles” (128bit)

-2,147,483,648
to
2,147,483,647

-9,223,372,036,854,
/75,808
to
9,223,372,036,854,
/75,807

Decimal values are
approximated

Decimal values are
stored with high
precision (34 decimal
digits)

Use for “normal”

integers

Use for large
integers

Use for floats where

high precision is not
required

Use for floats where
high precision is
required

ACADE o o o . o
MIND High Precision Floating Point Numbers

Doubles (64bit Floats)

MongoDB Default for ALL
Numbers

Higher Range of Numbers
but lower Decimal Precision

ACADE
MIND

Security & User Authentication

Lock Down Your Data

ACADE
MIND

Authentication &
Authorization

Auditing

Security Checklist

Transport Encryption

Server & Network Config
and Setup

Encryption at Rest

Backups & Software
Updates

ACADE N N o o
MIND Authentication & Authorization

Authentication

Identifies valid users of the
database

Analogy: You are employed and
therefore may access the office

>

CADE

MIND Role Based Access Control
NOT a User of your . G d in Rol
Applicati)'/ (Data Analyst, rouped in Roles
pplication: Your App) Privileges
Login with username + password
Shop => .
Products ISErt)

Logged in but no
rights to do anything!

MongoDB Server

| Products Customers Posts Authors
Collection Collection Collection Collection

ACADE

MIND Why Roles?

Different Types of Database Users

ACADE
MIND

updateUser ()

Creating & Editing Users

createUser ()

“maxschwarzmueller”

Database (e.g. admin)

Access is NOT limited to
authentication database

ACADE

MIND Built-in Roles
Database Admin All Database Roles
: readAnyDatabase
read uik;'rafdmn:?n readWriteAnyDatabase
readWrite dbOwner userAdminAnyDatabase
dbAdminAnyDatabase

Cluster Admin Backup/ Restore

clusterManager dbOwner (admin)
clusterMonitor backup userAdmin (admin)
hostManager restore userAdminAnyDatabase

clusterAdmin root

>

“MIND What's Up With The Databases?

» Admin “ Roles

Roles

Users

::

User authenticate against their Roles are attached to
Database Databases and can only be
Access is NOT limited to that assigned to Users who use this
Database though because Database as an Authentication
Database

Roles define Access Rights

ACADE .
MIND Practice!

Database Admin

Developer

Work on Database, Create Read & Write Data in
Collections, Create Manage Users "Customers” and “Sales”
Indexes Databases

ACADE .
MIND Transport Encryption

App Encrypted!

MongoDB Driver

ACADE
MIND

Encryption at Rest

Storage

email: "test@test.com",

password:

"ad50dsjaflf1lOur239"

<

Encrypted/ Hashed

email: "test@test.com",

password:

ACADE

MIND Module Summary
* MongoDB uses a Role Based Access * You can encrypt data during transportation and
Control approach at rest
" You create users on databases and = During transportation, you use TLS/ SSL to
you then log in with your credentials encrypt data
(against those d.otqbqses) = For production, you should use SSL certificates
" Users have no rights by default, you issues by a certificate authority (NOT self-signed
need to add roles to allow certain certificates)
opero_tio.ns » For encryption at rest, you can encrypt both the
- Fierr_m_ssmni that are granted by roles files that hold your data (made simple with
(“Privileges”) are only granted for the “MongoDB Enterprise”) and the values inside your
database the user was added to documents
unless you explicitly grant access to
other databases
= You can use “AnyDatabase” roles for
cross-database access

ACADE
MIND

Performance, Fault Tolerance &
Deployment

Entering the Enterprise World

ACADE

MIND What's Inside This Module?

What influences Performance?

Capped Collections

Replica Sets

Sharding

MongoDB Server Deployment

ACADE
MIND What Influences Performance?

Efficient Queries / Operations

Indexes

Fitting Data Schema

Developer /DB Admin

>

CADE .
MIND Replica Sets

Client (Shell, Driver)

MongoDB Server

Replica Set Primary Node

Asynchronous Replication

Secondary Node Secondary Node

>

CADE .
MIND Replica Sets Reads

Client (Shell, Driver)

MongoDB Server

Offline

Replica Set :
P Primary Node Read from

new Primary

Secondary Node Secondary Node

ACADE

MIND Why Replica Sets?

Improve Read Performance

>

CADE o
MIND Replica Sets Secondary Reads

Client (Shell, Driver)

MongoDB Server

Replica Set Primary Node

Secondary Node Secondary Node

A MIND Sharding (Horizontal Scaling)

MongoDB Server

>

ACADE
MIND

How Sharding Works

mongos (Router)

mongod (Server /

Shard)

Shard Key

mongod (Server /
Slalelge)

Shard Key

mongod (Server /

Shard)

Shard Key

>

CADE . o
MIND Queries & Sharding

find()

mongos

v v
Option 1: Operation does Option 2: Operation does
not contain Shard Key contain Shard Key

Broadcast V Directly send to right Shard

CADE
MIND

localhost

mongod

Manage Shards

Deploying a MongoDB Server

Secure User / Auth

Web Server / Host

mongod

Protect Web Server/
Network

Manage Replica Sets

Encryption
(Transportation &
Rest)

Regular Backups

Update Software

.!!CI\DE

MIND MongoDB Atlas is a Managed Solution
mongod > mongod
M Shard Secure User / Auth Protect Web Server /
anage ->hards Setup Network
Encryption
Manage Replica Sets (Transportation & Regular Backups Update Software
Rest)

ACADE
MIND Module Summary

Performance & Fault Tolerancy Deployment & MongoDB Atlas

» Deploymentis a complex matter since it involves
many tasks — some of them are not even directly
related to MongoDB

» Unless you are an experienced admin (or you got
one), you should consider a managed solution like
MongoDB Atlas

» Atlas is a managed service where you can
configure a MongoDB environment and pay at a
by-usage basis

= Consider Capped Collections for cases
where you want to clear old data
automatically

» Performance is all about having
efficient queries/ operations, fitting
data formats and a best-practice
MongoDB server config

= Replica sets provide fault tolerancy
(with automatic recovery) and
improved read performance

= Sharding allows you to scale your
MongoDB server horizontally

ACADE
MIND

Transactions

Fail Together

ACADE .
MIND Transactions

User deletes Account
Users Collection Posts Collection

{ User Document} { Post Document }

related

|

{ Post Document }

ACADE
MIND

From Mongo Shell to Drivers

Writing Application Code

ACADE

MIND What's Inside This Module?

How translate “Shell Commands” to

“Driver Commands”

Connecting to MongoDB Servers

CRUD Operations

ACADE

MIND Splitting Work between Drivers & Shell

Shell

Configure Database

Create Collections

Create Indexes

ACADE
MIND

MongoDB Stitch

Beyond Data Storage

ACADE

MIND What's Inside This Module?

What is Stitch?

Using Stitch

>

CADE

MIND What is Stitch?

Serverless Platform for Building Applications

Cloud Database (Atlas)
Authentication ‘

React to Events

Your App’s Users!

\ 4

Access to (Atlas) Database

Stitch QueryAnywhere Stitch Triggers Stitch Functions

Execute Code/ Functionality
in the Cloud

MongoDB Mobile Stitch Services

ACADE
MIND Serverless?

Client (Your App)

Mobile App, Web
App (SPA) Database
Functions
App User
Authentication

MongoDB/ Atlas

ACADE
miNo Stitch Authentication vs MongoDB Authentication

Stitch Authentication

MongoDB stores + manages your
Application Users

Signup + Login via Stitch SDK

No Credentials have to be exposed in
Clients

Highly Granular Permissions

ACADE
MIND

Roundup & Next Steps

What Next?

ACADE
MIND

Play Around!

Practice, Practice, Practice

Use the Shell as a
Playground

Build Dummy/ Demo Apps
that use MongoDB +
Stitch

Build Dummy/ Demo Apps

that use MongoDB

