
What?

Humongous

Because it can store lots and lots of data

How it works

Shop

Users Orders

{ name: 'Max', age: 29 }

{ name: 'Manu' }

{ … }

{ … }

Database

Collections

Documents

Schemaless!

JSON (BSON) Data Format

{
"name": "Max",
"age": 29,
"address":

{
"city": "Munich"

},
"hobbies": [

{ "name": "Cooking" },
{ "name": "Sports" }

]
}

BSON Data Structure

No Schema!

id: 1 "name": "Max" "age": 29 …

id: 2 "name": "Manu" …

id: 3 "age": 31 …

Users Collection

Relations

No / Few Relations!

Relational Data needs to be merged manually!

Kind of…

MongoDB Ecosystem

MongoDB Database

Self-Managed /
Enterprise Atlas (Cloud)

CloudManager /
OpsManager

Compass

BI Connectors

MongoDB Charts

Stitch

Mobile Serverless Query API

Serverless Functions

Database Triggers

Real-Time Sync

Working with MongoDB

Application

Frontend
(UI)

Backend
(Server)

Data

Drivers

Node.js

Java

Python

MongoDB Shell

MongoDB
Server

Storage
EngineQueries

Communicate File/ Data
Access

Playground, Administration

A Closer Look

Data

MongoDB
Server

Storage
Engine

Memory

Read + Write Data in
Memory (fast)

Read + Write Data to
Files (slow)

Outline

Introduction

Data Schema &
Relations

Working with the Shell

CRUD Deep Dive -
Create

Basics & Basic CRUD

Using Compass

CRUD Deep Dive - Read

CRUD Deep Dive -
Delete

Using Indexes

The Aggregation
Framework

CRUD Deep Dive -
Update

Working with Geospatial
Data

Working with Numeric
Data

Security &
Authentication

Performance, Fault
Tolerance & Deployment

From Shell to Drivers

Transactions

MongoDB StitchB

N

A

Using MongoDB Drivers

MongoDB Driver

Backend CodeFrontend Code (e.g. SPA)

Host, Username, Password

MongoDB Server (Database)

Your Application

How To Get The Most Out Of The Course

Watch the Videos At your Pace!

Pause & Code Along

Do the Assignments

Dive into the Official Docs +
Google

Ask + Answer in the Q&A Section Answering makes
you a Pro!

Learn to Solve
Problems

Did you really
understand it?

Active > Passive

Document & CRUD Basics

Working with the Database

What’s Inside This Module?

Basics about Collections & Documents

Basic Data Types

Performing CRUD Operations

Databases, Collections, Documents

Database

Collection Collection

Document

Document

Document

Document

Document

Document

Created Implicitly

JSON

{
"name": "Max",
"age": 29,
"isInstructor": true,
"hobbies": [
"Sports",
"Cooking"

],
"address": {
"street": "My Street 5",
"city": "Munich"

}
}

Surrounding curly
braces delimit the
JSON document

This is called a “Field” or
“Property” of the JSON
document. Multiple Fields
are separated by commas

“Fields” consist of a “Key”
(or “name”) and “Value”
part. "Key and Value are
separated by a colon.

Key Value

Values can be strings (e.g.
“Max”), numbers (e.g. 29),
booleans (e.g. true), arrays
([…]) and other documents
(also called objects; { … })

JSON vs BSON

JSON BSON

{
"name": "Max",
"age": 29

}
Binary Data

Extends JSON Types (e.g. more
detailed Number Types)

MongoDB
Drivers

Efficient Storage

CRUD Operations & MongoDB

Application Analytics / BI Tools

User

<Code>

MongoDB Driver

Admin

MongoDB Server

BI Connector / Shell Shell

Collection A Collection B

{ … }, { … } { … }, { … }

Create, Read, Update, Delete
Read

Create, Read, Update, Delete

CRUD Operations

Create

insertOne(data, options)

insertMany(data, options)

Read

find(filter, options)

findOne(filter, options)

Update

updateOne(filter, data, options)

updateMany(filter, data, options)

Delete

deleteOne(filter, options)

deleteMany(filter, options)

replaceOne(filter, data, options)

Example #1: Flight Data

Flight

{
"departureAirport": "MUC",
"arrivalAirport": "SFO",
"aircraft": "Airbus A380",
"distance": 12000,
"intercontinental": true

},
{ … }

Schedule
(Add) a Flight Cancel Flight

Update
Information

Display Flight
Information

Create Delete

Update Read

You MUST have an _id

MongoDB creates an ObjectId() for you

You can set any other Value

Unique IDs

Embedded Documents

Up to 100 Levels
of Nesting

Max. 16mb /
document

Arrays

A
rr

ay
 o

f
Em

be
dd

ed

D
oc

um
en

ts

Arrays can hold ANY Data

Cursors

find()

Cursor Object[{ … }, { … }, …]

Cycle Through Results

Projection

{
"_id": "...",
"name": "Max",
"age": 29,
"job": "instructor"

}

In Database

{
"name": "Max",
"age": 29

}

In Application

Projection

update() vs updateOne() vs updateMany()

update() updateOne() updateMany()

Overwrite by default

Use $set to patch values

Error without $set (or
other update operators)

Error without $set (or
other update operators)

Use $set to patch values Use $set to patch values

Update all identified
elements

Update all identified
elements

Update first identified
element

Use these!

Example #2: Patient Data

Patient

{
"firstName": "Max",
"lastName": "Schwarzmueller",
"age": 29,
"history": [

{ "disease": "cold", "treatment": … },
{ … }

]
}

Tasks

1 Insert 3 patient records with at least 1 history entry per patient

2 Update patient data of 1 patient with new age, name and history entry

3 Find all patients who are older than 30 (or a value of your choice)

4 Delete all patients who got a cold as a disease

Module Summary

Databases, Collections, Documents

§ A Database holds multiple Collections
where each Collection can then hold
multiple Documents

§ Databases and Collections are created
“lazily” (i.e. when a Document is
inserted)

§ A Document can’t directly be inserted
into a Database, you need to use a
Collection!

CRUD Operations

§ CRUD = Create, Read, Update, Delete
§ MongoDB offers multiple CRUD operations for

single-document and bulk actions (e.g.
insertOne(), insertMany(), …)

§ Some methods require an argument (e.g.
insertOne()), others don’t (e.g. find())

§ find() returns a cursor, NOT a list of documents!
§ Use filters to find specific documents

Document Structure

§ Each document needs a unique ID (and
gets one by default)

§ You may have embedded documents
and array fields

Retrieving Data

§ Use filters and operators (e.g. $gt) to limit the
number of documents you retrieve

§ Use projection to limit the set of fields you retrieve

Data Schemas & Data Modelling

Storing your Data Correctly

What’s Inside This Module?

Understanding Document Schemas &
Data Types

Modelling Relations

Schema Validation

Schema-less Or Not?

Isn’t MongoDB all about having NO data Schemas?

MongoDB enforces no schemas! Documents don’t have to use
the same schema inside of one collection

But that does not mean that you can’t use some kind of
schema!

To Schema Or Not To Schema

Chaos! SQL World!

Products Products Products

{
"title": "Book",
"price": 12.99

}

{
"name": "Bottle",
"available": true

}

Very Different!

{
"title": "Book",
"price": 12.99

}

{
"title": "Bottle",
"price": 5.99
"available": true

}

Extra Data

{
"title": "Book",
"price": 12.99

}

{
"title": "Bottle",
"price": 5.99

}

Full Equality

Data Types

Text

Integer (int32)

ObjectId

Boolean

ISODate

Embedded Document

Array

Number

NumberLong (int64) NumberDecimal

"Max"

true

55 10000000000 12.99

ObjectId("sfasd")

ISODate("2018-09-09")

{ "a": { … } }

{ "b": […] }

Timestamp
Timestamp(11421532)

Data Schemas & Data Modelling

Which Data does my App need
or generate?

Where do I need my Data?

Which kind of Data or
Information do I want to display?

How often do I fetch my data?

How often do I write or change
my data?

User Information, Product
Information, Orders, …

Welcome Page, Products
List Page, Orders Page

Welcome Page: Product
Names; Products Page: …

For every page reload

Orders => Often
Product Data => Rarely

Defines the Fields you’ll need
(and how they relate)

Defines your required
collections + field groupings

Defines which queries you’ll
need

Defines whether you should
optimize for easy fetching

Defines whether you should
optimize for easy writing

Data Schemas & Data Modelling

Goal: Store Data in the Format you need in
your Frontend! Don’t run complex

transformation queries!
Fetching a lot?

Goal: Store Data such that you avoid
duplicates and redundancy!Writing a lot?

Relations - Options

Nested / Embedded Documents References

{
userName: 'max',
age: 29,
address: {

street: 'Second Street',
city: 'New York'

}
}

{
userName: 'max’,
favBooks: [{…}, {…}]

}

{
userName: 'max',
favBooks: ['id1', 'id2']

}

Customers

{
_id: 'id1',
name: 'Lord of the Rings 1'

}

Lots of data duplication!Customers

Customers

Books

Example #1 – Patient <-> Disease Summary

Patient B

Patient C

Patient A Summary A

Summary B

Summary C

”One patient has one disease summary, a
disease summary belongs to one patient”

Example #2 – Person <-> Car

Person A Car 1

Person B Car 2

Person C Car 2

”One person has one car, a car belongs to one
person”

Example #3 – Thread <-> Answers

Question Thread A Answer 1

Question Thread B Answer 1

Question Thread C Answer 1

Answer 2

Answer 2

“One thread has many answers, one answer
belongs to one question thread.”

Example #4 – City <-> Citizens

City A Citizen 1

City B Citizen 1

City C Citizen 1

Citizen 2

Citizen 2

“One city has many citizens, one citizen
belongs to one city.”

Example #5 – Customers <-> Products (Orders)

Customer A Product 1

Customer B Product 3

Customer C Product 4

Product 2

Product 5

“One customer has many products (via
orders), a product belongs to many

customers.”

Example #6 – Books <-> Authors

Book A Author 1

Book B Author 3

Book C Author 4

Author 2

Author 5

“One book has many authors, an author
belongs to many books.”

Relations - Options

Nested / Embedded Documents References

Great for data that belongs together and is
not really overlapping with other data

Group data together logically

Avoid super-deep nesting (100+ levels) or
extremely long arrays (16mb size limit per

document)

Great for related but shared data as well as
for data which is used in relations and

standalone

Split data across collections

Allows you to overcome nesting and size
limits (by creating new documents)

Joining with $lookup

{
userName: 'max',
favBooks: ['id1', 'id2']

}

{
_id: 'id1',
name: 'Lord of the Rings 1'

}

Customers

Books

customers.aggregate([
{ $lookup: {

from: "books",
localField: "favBooks",
foreignField: "_id"
as: "favBookData"

}
}

])

Example Project: A Blog

User

App Server

<Your Code>

PHP Node.js.NET

MongoDB Server

Database

MongoDB Driver

Create Post Edit Post Delete Post Fetch Posts Fetch Post Comment

Server-side rendered
Views, SPA, Mobile App

Schema Validation

insertOne()

Collection

Validation Schema

Rejected!

Accepted

Schema Validation

validationLevel validationAction

Which documents get validated? What happens if validation fails?

strict

moderate

All inserts & updates

All inserts & updates
to correct documents

error

warn

Throw error and deny
insert/ update

Log warning but
proceed

bypassDocumentValidation()

Data Modelling & Structuring – Things to Consider

In which Format will you fetch your Data?

How often will you fetch and change your Data?

How much data will you save (and how big is it)?

How is your Data related?

Will Duplicates hurt you (=> many Updates)?

Will you hit Data/ Storage Limits?

Module Summary

Modelling Schemas

§ Schemas should be modelled based on
your application needs

§ Important factors are: Read and write
frequency, relations, amount (and size)
of data

Modelling Relations

§ Two options: Embedded documents or references
§ Use embedded documents if you got one-to-one

or one-to-many relationships and no app or data
size reason to split

§ Use references if data amount/ size or application
needs require it or for many-to-many relations

§ Exceptions are always possible => Keep your app
requirements in mind!Schema Validation

§ You can define rules to validate inserts
and update before writing to the
database

§ Choose your validation level and action
based on your application
requirements

Working with Shell & Server

Beyond Start & Stop

What’s Inside This Module?

Start MongoDB Server as Process &
Service

Configuring Database & Log Path (and
Mode)

Fixing Issues

Diving Deeper Into CREATE

A Closer Look at Creating & Importing Documents

What’s Inside This Module?

Document Creation Methods (CREATE)

Importing Documents

CREATE Documents

insertOne()

insertMany()

insert()

mongoimport

db.collectionName.insertOne({field: "value"})

mongoimport –d cars –c carsList --drop --jsonArray

db.collectionName.insertMany([
{field: "value"},
{field: "value"}])

db.collectionName.insert()

WriteConcern

Client (e.g. Shell) MongoDB Server
(mongod) Storage Engine

Memory Data on
Disk

Journal
(”Todos”)

{ w: 1, j: undefined }

{ w: 1, j: true}

{ w: 1, wtimeout: 200, j: true}

e.g. insertOne()

What is “Atomicity”?

Operation (e.g. insertOne())

Rolled Back (i.e. NOTHING is
saved) Saved as a Whole

Error Success

MongoDB CRUD Operations are Atomic on the Document Level (including Embedded
Documents)

Tasks

1 Insert multiple companies (company data of your choice) into a collection
– both with insertOne() and insertMany()

2 Deliberately insert duplicate ID data and “fix” failing additions with
unordered inserts

3 Write data for a new company with both journaling being guaranteed and
not being guaranteed

Module Summary

insertOne(), insertMany()

§ You can insert documents with
insertOne() (one document at a time)
or insertMany() (multiple documents)

§ insert() also exists but it’s not
recommended to use it anymore – it
also doesn’t return the inserted ids

Ordered Insertes

§ By default, when using insertMany(), inserts are
ordered – that means, that the inserting process
stops if an error occurs

§ You can change this by switching to “unordered
inserts” – your inserting process will then
continue, even if errors occurred

§ In both cases, no successful inserts (before the
error) will be rolled back

WriteConcern

§ Data should be stored and you can
control the “level of guarantee” of that
to happen with the writeConcern
option

§ Choose the option value based on your
app requirements

READing Documents with Operators

Accessing the Required Data Efficiently

What’s Inside This Module?

Methods, Filters & Operators

Query Selectors (READ)

Projection Operators (READ)

Methods, Filters & Operators

Access
current

database

Access this
collection

Equality/ Single Value

db . myCollection find({age: 32}.)

Field Value

db . myCollection find({age:.)$gt 30

Field Value

Apply this

FilterMethod

Operator

Range

Filter
Apply this

Method

}{ }:

Operators

Query & Projection Update Aggregation

Query Selectors

Projection Operators

Fields

Arrays

Pipeline Stages

Pipeline OperatorsAggregation

Module

Query Modifiers

Change Query
BehaviourDeprecated

Read Update

How Operators Impact our Data

Query Operator Locate Data $eq

Update Operator

Projection Operator

Type Purpose ExampleChanges Data?

Modify data
presentation

Modify + add
additional data

$

$inc

Query Selectors & Projection Operators

Query Selectors Projection Operators

Comparison

Logical

Element

Evaluation

Geospatial

Array

Comments

$

$elemMatch

$meta

$slice
Geospatial
Module

Tasks

1 Import the attached data into a new database (e.g. boxOffice) and
collection (e.g. movieStarts)

2 Search all movies that have a rating higher than 9.2 and a runtime lower
than 100 minutes

3 Search all movies that have a genre of “drama” or “action”

4 Search all movies where visitors exceeded expectedVisitors

Tasks

1 Import the attached data file into a new collection (e.g. exmoviestarts) in
the boxOffice database

2 Find all movies with exactly two genres

3 Find all movies which aired in 2018

4 Find all movies which have ratings greater than 8 but lower than 10

Understanding Cursors

find()

Potentially yields 1,000s or
Millions of Documents

Client (Cursor) MongoDB Server /
Database

Request Batch #1

Request Batch #2

…

Tasks

1 For this assignment, we’ll work on the “extended boxoffice” dataset
(which was imported in the previous assignment)

2 Filter for any data of your choice (e.g. all data) and make sure to only
include title + visitors in your result data.

3 Search for all movies that have an entry of 10 in their ratings array and
return just that array entry (inside of the array) in the result data

4 Repeat step 3) but return all “action” genre entries instead

Module Summary

Query Selectors & Operators

§ You can read documents with find()
and findOne()

§ find() returns a cursor which allows
you to fetch data step-by-step

§ Both find() and findOne() take a filter
(optional) to narrow down the set of
documents they return

§ Filters can use a variety of query
selectors/ operators to control which
documents are retrieved

Cursors

§ find() returns a cursor to allow you to efficiently
retrieve data step by step (instead of fetching all
the documents in one step)

§ You can use a cursor to move through the
documents

§ sort(), skip() and limit() can be used to control the
order, portion and quantity of the retrieved results

Projection

§ Projection allows you to control which fields are
returned in your result set

§ You can include fields (field: 1) and exclude them
(field: 0)

§ For arrays, special projection operators help you
return the right field data

Understanding Document UPDATEs

Because we Always need the Latest Information

What’s Inside This Module?

Document Updating Operator (UPDATE)

Updating Fields

Updating Arrays

Operators

Query & Projection Update Aggregation

Query Selectors

Projection Operators

Fields

Arrays

Bitwise

Pipeline Stages

Pipeline OperatorsPipeline Module

Query Modifiers

Change Query
BehaviourDeprecated

Read Update

How Operators Impact our Data

Query Operator Locate Data $eq

Update Operator

Projection Operator

Type Purpose ExampleChanges Data?

Modify data
presentation

Modify + add
additional data

$elemMatch

$rename

Update Operators

Operators

Fields

A
rr

ay
s

Modifiers

Operator Examples

$currentDate $mul

$push $pop

$position $slice

Operators

Tasks

1 Create a new collection (“sports”) and upsert two new documents into it
(with these fields: “title”, “requiresTeam”)

2 Update all documents which do require a team by adding a new field with
the minimum amount of players required

3 Update all documents that require a team by increasing the number of
required players by 10

Module Summary

updateOne() & updateMany()

§ You can use updateOne() and
updateMany() to update one or more
documents in a collection

§ You specify a filter (query selector)
with the same operators you know
from find()

§ The second argument then describes
the update (e.g. via $set or other
update operators)

Update Operators

§ You can update fields with a broad variety of field
update operators like $set, $inc, $min etc

§ If you need to work on arrays, take advantage of
the shortcuts ($, $[] and $[<identifier>] +
arrayFilters)

§ Also use array update operators like $push or
$pop to efficiently add or remove elements to or
from arrays

Replacing Documents

§ Even though it was not covered again,
you also learned about replaceOne()
earlier in the course – you can use that
if you need to entirely replace a doc

DELETE Documents

Sometimes we have to Get Rid of Data

What’s Inside This Module?

Document Deletion Methods (DELETE)

Indexes

Retrieving Data Efficiently

What’s Inside This Module?

What are Indexes?

Different Types of Indexes

Using & Optimizing Indexes

Why Indexes?

db.products.find({seller: "Max"})

Products

{ … }

{ … }

{ … }

{ … }

{ … }

{ … }

C
O

LL
SC

A
N

Products
Seller Index

"Anna"

"Chris"

"Manu"

"Manu"

"Max"

"Max"

{ … }

{ … }

IX
SC

A
N

No Index With Index

Ordered!

Scan ALL documents,
then filter

Directly “jump” to
filtered documents

Don’t Use Too Many Indexes!

_id name age hobbies

Products Collection

Products Indexes

_id name age hobbies

Index ALL fields for ALL
collections for best
performance, right?

insert

Update all Indexes!

Index Types

“Normal”

Compound

Multikey

Text

Geospatial

Ordered field { name: 1 }

Multiple, combined ordered fields { name: 1, age: -1 }

Ordered array values { hobbies: 1 }

Ordered text fragments { description: ”text” }

Ordered geodata { location: ”2d” }

Index Config

Custom Name

Unique

Partial

Sparse

TTL

Query Diagnosis & Query Planning

explain()

“queryPlanner” “executionStats” “allPlansExecution”

Show Summary for
Executed Query +

Winning Plan

Show Detailed Summary
for Executed Query +

Winning Plan + Possibly
Rejected Plans

Show Detailed Summary
for Executed Query +

Winning Plan + Winning
Plan Decision Process

Efficient Queries & Covered Queries

IXSCAN COLLSCAN

Milliseconds Process Time

of Keys (in Index)
Examined

of Documents Examined

of Documents Returned

typically beats

Should be as close as
possible
OR # of Documents should
be 0

Should be as close as
possible
OR # of Documents should
be 0

Covered Query!

“Winning Plans”

Approach 1 Approach 2 Approach 3

Winning Plan

Cache

Cached

Cleared after certain amount of inserts, db restart etc

Clearing the Winning Plan from Cache

Stored Forever?

Write Threshold
(currently 1,000) Index is Rebuilt Other Indexes are

Added or Removed
MongoDB Server is

Restarted

Understanding ”text” Indexes

This product is a must-buy for all fans of modern fiction!

Text Index

product must buy fans modern fiction

Stopwords (e.g. “a”) are eliminated!

Building Indexes

Foreground Background

Collection is locked during
index creation

Collection is accessible during
index creation

Faster Slower

Module Summary

What and Why?

§ Indexes allow you to retrieve data more efficiently
(if used correctly) because your queries only have
to look at a subset of all documents

§ You can use single-field, compound, multi-key
(array) and text indexes

§ Indexes don’t come for free, they will slow down
your writes

Queries & Sorting

§ Indexes can be used for both queries and efficient
sorting

§ Compound indexes can be used as a whole or in a
“left-to-right” (prefix) manner (e.g. only consider
the “name” of the “name-age” compound index)

Query Diagnosis & Planning

§ Use explain() to understand how
MongoDB will execute your queries

§ This allows you to optimize both your
queries and indexes

Index Options

§ You can also create TTL, unique or
partial indexes

§ For text indexes, weights and a
default_language can be assigned

Geospatial Queries

Finding Places

What’s Inside This Module?

Storing Geospatial Data in GeoJSON
Format

Querying Geospatial Data

Tasks

1 Pick 3 Points on Google Maps and store them in a collection

2 Pick a point and find the nearest points within a min and max distance

3 Pick an area and see which points (that are stored in your collection) it
contains

4 Store at least one area in a different collection

5 Pick a point and find out which areas in your collection contain that point

Module Summary

Storing Geospatial Data

§ You store geospatial data next to your other data
in your documents

§ Geospatial data has to follow the special
GeoJSON format – and respect the types
supported by MongoDB

§ Don’t forget that the coordinates are [longitude,
latitude], not the other way around!

Geospatial Indexes

§ You can add an index to geospatial data:
“2dsphere”

§ Some operations ($near) require such an index

Geospatial Queries

§ $near, $geoWithin and $geoIntersects
get you very far

§ Geospatial queries work with GeoJSON
data

Using the Aggregation Framework

Retrieving Data Efficiently & In a Structured Way

What is the “Aggregation Framework”?

Collection

{ $match }

{ $sort }

{ $project }

{ $group }

Output (List of
Documents)

Every stage receives
the output of the
previous stage

Pipeline Stages

Check official docs

$group vs $project

$group $project

n:1 1:1

Sum, Count, Average, Build Array Include/ Exclude Fields, Transform
Fields (within a Single Document)

$unwind

{ name: "Max", hobbies: ["Sports", "Cooking"] }

{ name: "Max", hobbies: "Sports” }

$unwind

{ name: "Max", hobbies: "Cooking"}

$skip + $limit + $sort

The Order Matters!

$sort $limit$skip

$text

Do a Text Index Search

Has to be the First Pipeline
Stage!

Aggregation Pipeline Optimization

MongoDB automatically optimizes for you!

Module Summary

Stages & Operators

§ There are plenty of available stages
and operators you can choose from

§ Stages define the different steps your
data is funneled through

§ Each stage receives the output of the
last stage as input

§ Operators can be used inside of stages
to transform, limit or re-calculate data

Important Stages

§ The most important stages are $match, $group,
$project, $sort and $unwind – you’ll work with
these a lot

§ Whilst there are some common behaviors
between find() filters + projection and $match +
$project, the aggregation stages generally are
more flexible

Working with Numeric Data

More Complex Than You Might Think

Integers, Longs, Doubles

Integers (int32) Longs (int64) Doubles (64bit) “High Precision
Doubles” (128bit)

-2,147,483,648
to

2,147,483,647

-9,223,372,036,854,
775,808

to
9,223,372,036,854,

775,807

Only full Numbers Only full Numbers Numbers with
Decimal Places

Numbers with
Decimal Places

Decimal values are
approximated

Decimal values are
stored with high

precision (34 decimal
digits)

Use for “normal”
integers

Use for large
integers

Use for floats where
high precision is not

required

Use for floats where
high precision is

required

High Precision Floating Point Numbers

Doubles (64bit Floats) Decimal (128bit Floats)

MongoDB Default for ALL
Numbers Has to be Created Explicitly

Higher Range of Numbers
but lower Decimal Precision

Lower Range of Numbers but
higher Decimal Precision

Security & User Authentication

Lock Down Your Data

Security Checklist

Authentication &
Authorization Transport Encryption Encryption at Rest

Auditing Server & Network Config
and Setup

Backups & Software
Updates

Authentication & Authorization

Authentication Authorization

Identifies valid users of the
database

Identifies what these users may
actually do in the database

Analogy: You are employed and
therefore may access the office

Analogy: You are employed as an
account and therefore may access

the office and process orders

Role Based Access Control

MongoDB Server

Shop Database Admin DatabaseBlog Database

Products
Collection

Customers
Collection

Posts
Collection

Authors
Collection

User
(Data Analyst,

Your App)

NOT a User of your
Application! Privileges

Resources Actions

Shop =>
Products insert()

Login with username + password

Logged in but no
rights to do anything! Auth enabled

Grouped in Roles

Why Roles?

Different Types of Database Users

Administrator Developer / Your App Data Scientist

Needs to be able to manage
the database config, create

users etc

Does NOT need to be able to
insert or fetch data

Needs to be able to insert,
update, delete or fetch data

(CRUD)

Does NOT need to be able to
create users or manage the

database config

Needs to be able to fetch
data

Does NOT need to be able to
create users, manage the
database config or insert,

edit or delete data

Creating & Editing Users

createUser()

Database (e.g. admin) Access is NOT limited to
authentication database

updateUser()

“maxschwarzmueller”

Roles

Privileges

Built-in Roles

Database User Database Admin All Database Roles

Cluster Admin Backup/ Restore Superuser

read
readWrite

dbAdmin
userAdmin
dbOwner

readAnyDatabase
readWriteAnyDatabase
userAdminAnyDatabase
dbAdminAnyDatabase

clusterManager
clusterMonitor
hostManager
clusterAdmin

backup
restore

dbOwner (admin)
userAdmin (admin)

userAdminAnyDatabase
root

What’s Up With The Databases?

Admin

Shop

Blog

Users Roles

Users Roles

Users Roles

User authenticate against their
Database

Access is NOT limited to that
Database though because

Roles define Access Rights

Roles are attached to
Databases and can only be

assigned to Users who use this
Database as an Authentication

Database

Global Users & Roles

Practice!

Database Admin User Admin Developer

Work on Database, Create
Collections, Create

Indexes
Manage Users

Read & Write Data in
”Customers” and “Sales”

Databases

Transport Encryption

App

MongoDB Driver

Client MongoDB Server

Encrypted!

Encryption at Rest

Storage

{
email: "test@test.com",
password: "ad50dsjaflf10ur239"

}

{
email: "test@test.com",
password: "…"

}

Encrypted!

Encrypted/ Hashed

Module Summary

Users & Roles

§ MongoDB uses a Role Based Access
Control approach

§ You create users on databases and
you then log in with your credentials
(against those databases)

§ Users have no rights by default, you
need to add roles to allow certain
operations

§ Permissions that are granted by roles
(“Privileges”) are only granted for the
database the user was added to
unless you explicitly grant access to
other databases

§ You can use “AnyDatabase” roles for
cross-database access

Encryption

§ You can encrypt data during transportation and
at rest

§ During transportation, you use TLS/ SSL to
encrypt data

§ For production, you should use SSL certificates
issues by a certificate authority (NOT self-signed
certificates)

§ For encryption at rest, you can encrypt both the
files that hold your data (made simple with
“MongoDB Enterprise”) and the values inside your
documents

Performance, Fault Tolerance &
Deployment

Entering the Enterprise World

What’s Inside This Module?

What influences Performance?

Capped Collections

Replica Sets

Sharding

MongoDB Server Deployment

What Influences Performance?

Indexes

Efficient Queries / Operations

Fitting Data Schema

Hardware & Network

Replica Sets

Sharding

Developer / DB Admin DB Admin / System Admin

Replica Sets

Client (Shell, Driver)

MongoDB Server

Primary Node

Secondary Node Secondary Node

Replica Set

Asynchronous Replication

Write

Write

Replica Sets Reads

Client (Shell, Driver)

MongoDB Server

Primary Node

Secondary Node Secondary Node

Replica Set

Read

Read

Read from
new Primary

Offline

Why Replica Sets?

Backup / Fault Tolerancy

Improve Read Performance

Replica Sets Secondary Reads

Client (Shell, Driver)

MongoDB Server

Primary Node

Secondary Node Secondary Node

Replica Set

Read

Read

Read

Sharding (Horizontal Scaling)

MongoDB Server

Data is distributed (not replicated!) across Shards

Queries are run across all Shards

How Sharding Works

Client

mongos (Router)

mongod (Server /
Shard)

mongod (Server /
Shard)

mongod (Server /
Shard)

Shard Key Shard Key Shard Key

Documents

Queries & Sharding

find()

mongos

Shard Shard Shard

Option 1: Operation does
not contain Shard Key

Option 2: Operation does
contain Shard Key

Broadcast Directly send to right Shard

Deploying a MongoDB Server

localhost Web Server / Host

mongod mongod

Protect Web Server /
Network

Regular Backups Update Software

Secure User / Auth
SetupManage Shards

Manage Replica Sets
Encryption

(Transportation &
Rest)

MongoDB Atlas is a Managed Solution

localhost Atlas

mongod mongod

Protect Web Server /
Network

Regular Backups Update Software

Secure User / Auth
SetupManage Shards

Manage Replica Sets
Encryption

(Transportation &
Rest)

Module Summary

Performance & Fault Tolerancy

§ Consider Capped Collections for cases
where you want to clear old data
automatically

§ Performance is all about having
efficient queries/ operations, fitting
data formats and a best-practice
MongoDB server config

§ Replica sets provide fault tolerancy
(with automatic recovery) and
improved read performance

§ Sharding allows you to scale your
MongoDB server horizontally

Deployment & MongoDB Atlas

§ Deployment is a complex matter since it involves
many tasks – some of them are not even directly
related to MongoDB

§ Unless you are an experienced admin (or you got
one), you should consider a managed solution like
MongoDB Atlas

§ Atlas is a managed service where you can
configure a MongoDB environment and pay at a
by-usage basis

Transactions

Fail Together

Transactions

User deletes Account

Users Collection Posts Collection

{ User Document } { Post Document }

{ Post Document }

related

Should be deleted together

From Mongo Shell to Drivers

Writing Application Code

What’s Inside This Module?

How translate “Shell Commands” to
“Driver Commands”

Connecting to MongoDB Servers

CRUD Operations

Splitting Work between Drivers & Shell

Shell

Configure Database

Driver

CRUD Operations

Create Indexes

Create Collections Aggregation Pipelines

MongoDB Stitch

Beyond Data Storage

What’s Inside This Module?

What is Stitch?

Using Stitch

What is Stitch?

Serverless Platform for Building Applications

React to EventsAccess to (Atlas) Database Execute Code/ Functionality
in the Cloud

Stitch QueryAnywhere Stitch Triggers

MongoDB Mobile

Stitch Functions

Cloud Database (Atlas)

Authentication

Stitch Services

Your App’s Users!

Serverless?

Client (Your App) MongoDB/ Atlas“Stitch Servers”
via SDK

Mobile App, Web
App (SPA) Database

Functions

App User
Authentication

Your Backend (e.g.
Node.js REST API)

Stitch Authentication vs MongoDB Authentication

Stitch Authentication MongoDB Authentication

MongoDB stores + manages your
Application Users

Signup + Login via Stitch SDK

No Credentials have to be exposed in
Clients

MongoDB Credentials have to be
exposed => Not usable in Clients

Your create + manage Database Users

Login during Connection

Highly Granular Permissions Role-based Permissions

Roundup & Next Steps

What Next?

Play Around!

Use the Shell as a
Playground

Build Dummy/ Demo Apps
that use MongoDB

Build Dummy/ Demo Apps
that use MongoDB +

Stitch

Dive into the Official Docs
Dive into Stackoverflow +

Blog Posts (Google!) to
learn Best Practices

Use YouTube + Other
Courses to Learn more
about Specific Topics

Practice, Practice, Practice

Resources

