
Integration Tests
So, in this section, you learned that:

- Unit tests are easy to write, fast to execute and are ideal for testing functions with

minimal or zero dependency on external resources.

- The more you use mock functions, the more your tests get coupled to the current

implementation. If you change this implementation in the future, your tests will

break. If you find yourself doing too much mocking, that’s when you need to

replace your unit test with an integration test.

- With integration tests, we test our application with a real database. As a best

practice, separate your test database from the development or production

databases.

- You should write each integration test as if it is the only test in the world. Start

with a clean state (database). Populate the database only with the data required

by the test. Nothing more, nothing less. Clean up after your test using the

afterEach function.

- Run jest with —coverage flag to get a code coverage report.

