
Building RESTful APIs with Express
So, in this section, you learned that:

- REST defines a set of conventions for creating HTTP services:

- POST: to create a resource

- PUT: to update it

- GET: to read it

- DELETE: to delete it

- Express is a simple, minimalistic and lightweight framework for building web

servers.

// Build a web server

const express = require(‘express’);

const app = express();

// Creating a course

app.post(‘/api/courses’, (req, res) => {

 // Create the course and return the course object

 resn.send(course);  

});

// Getting all the courses

app.get(‘/api/courses’, (req, res) => {

 // To read query string parameters (?sortBy=name)

 const sortBy = req.query.sortBy;  

 

 // Return the courses  

 res.send(courses);  

});

// Getting a single course

app.get(‘/api/courses/:id’, (req, res) => {

 const courseId = req.params.id;  

  

 // Lookup the course  

 // If not found, return 404  

 res.status(404).send(‘Course not found.’); 

 

 // Else, return the course object 

 res.send(course);  

});

// Updating a course

app.put(‘/api/courses/:id’, (req, res) => {  

 // If course not found, return 404, otherwise update it 

 // and return the updated object.  

});

// Deleting a course

app.delete(‘/api/courses/:id’, (req, res) => {

 // If course not found, return 404, otherwise delete it 

 // and return the deleted object.  

});

// Listen on port 3000

app.listen(3000, () => console.log(‘Listening…’));

- We use Nodemon to watch for changes in files and automatically restart the

node process.

- We can use environment variables to store various settings for an application. To

read an environment variable, we use process.env.

// Reading the port from an environment variable

const port = process.env.PORT || 3000;

app.listen(port);

- You should never trust data sent by the client. Always validate! Use Joi package

to perform input validation.

