Implementing

Progressive
Web Apps

using

React

A Practical Guide to create
Web Apps that provides a native
experience to the users

Enriqgue Pablo Molinari

While the author has used good faith efforts to ensure that the information
and instructions contained in this work are accurate, the author disclaims all
responsibility for errors or omissions, including without limitation responsibility
for damages resulting from the use of or reliance on this work. Use of the
information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject
to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses
and /or rights.

Contents

About the Author

What is this book about?

Development Environment

1 Introduction

1.1

Progressive?

2 Crafting your First PWA

2.1

2.2
2.3
24
2.5

Configure the Development Environment
2.1.1 Using a Reverse Proxy
2.1.2 Using LocalTunnel
Task List React Application
The Service Workero
Making the Web App Installable
Supporting Offline L.

3 Handling New Releases

3.1
3.2

The Update Process
Manual Update

4 Incorporating Background Sync

4.1
4.2
4.3
4.4

The Background Sync Capability
Using IndexedDBo

Adding IndexedDB and Background Sync to Task List
Handling Syncing Errors

10
10
10
14
16
21
35
43

57
o8
67

69
69
70
77

About the Author

My name is Enrique Pablo Molinari. 1 have been working in the software
industry for the last 22 years, working in different software projects from
different companies as developer, technical lead and architect. I'm a passionate
developer and also a passionate educator. In addition to my work on the
software industry, I'm teaching Object Oriented Design and Advance Database
Systems at Universidad Nacional de Rio Negro.

Implementing Progressive Web Apps is my third book. I have also written
Understanding React, a book to start learning React. And Coding an Architecture
Style, a book about hands-on software architecture. You can find more
about my thoughts on software development at my blog: Copy/Paste is
for Word. 1 would be very happy if you want to ping me by email at
enrique.molinari@gmail.com to send thoughts, comments or questions about
this book, the others or my blog.

https://leanpub.com/understandingreact
https://codinganarchitecturestyle.com
https://codinganarchitecturestyle.com
https://www.copypasteisforword.com/
https://www.copypasteisforword.com/

What i1s this book about?

In this book we are going to implement a Progressive Web App (PWA) using
a step-by-step approach. This learning experience starts with an already
crafted React application called Task List. To create this application I have
used the create-react-app tool with the cra-template-pwa template, which
gives us a good starting point for building a progressive web app.

We will go into the details about how to make the web app installable
and after that how to improve the user experience by adding offline support
to the web app. To make the learning process smooth I will first add offline
support for the read-only use cases of the application. After that, I will show
how to provide full offline support by using the IndexedDB database and the
Background Sync.

I will also explain how to update progressive web apps. How users get
notified that there is a new release of the application waiting to be installed

and how that actually happens.

This book requires prior knowledge of JavaScript and React.

https://github.com/enriquemolinari/react-starter-tasklist
https://create-react-app.dev/docs/making-a-progressive-web-app/
https://developer.chrome.com/blog/background-sync/

Development Environment

There are many development environments out there, and you can choose the
one you are more comfortable with. In any case if you don’t have a preference,
I recommend Visual Studio Code (VS Code). And to be more productive I
suggest installing the extension VS Code ES7 React/Redux/React-Native/JS
snippets which provides JavaScript and React snippets. I would also suggest
installing Prettier, which is a JavaScript/React code formatter.

To install an extension, in Visual Studio Code, go to the File menu, then
Preferences and then Extensions. You will see a search box that will allow
you to find the extensions that you want to install.

Finally, I really recommend configuring VS Code to format your source
files on save. You can do that by going to the File menu, then Preferences
and then Settings. On the search box type Editor: Format On Save. This
will format your code right after you save it.

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=dsznajder.es7-react-js-snippets
https://marketplace.visualstudio.com/items?itemName=dsznajder.es7-react-js-snippets
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode

Chapter 1

Introduction

1.1 Progressive?

No one has doubts about what a Web App mean. But progressive? What
does it mean?

The word progressive comes from the design philosophy known as progressive
enhancement coined by Steven Champeon and Nick Finck in 2003. The
idea is that you have to design your Web App to work in old devices, old
browsers, with bad connectivity or no connectivity at all, to reach as many
users as possible. But, it provides the best user experience for newer devices
and browsers. In other words, as described by MDN (Mozilla Development
Network):

"The word progressive in progressive enhancement means creating a
design that achieves a simpler-but-still-usable experience for users of
older browsers and devices with limited capabilities, while at the same
time being a design that progresses the user experience up to a more-
compelling, fully-featured experience for users of newer browsers and
devices with richer capabilities".

As we will see later in this book, there are many new features implemented
by modern browsers. For instance, there is one particularly nice that allows
your Web App to work offline. However, this and many other capabilities
have been added during recent years to browsers at different times and some
of them partially supported. So, feature detection is the technique that we
usually use to determine if that functionality can be used or not. In this way,
you can build a Web App that progresses.

http://www.hesketh.com/publications/inclusive_web_design_for_the_future/
https://developer.mozilla.org/en-US/docs/Glossary/Progressive_Enhancement

CHAPTER 1. INTRODUCTION 8

1.2 And... Progressive Web Apps?

Progressive Web Apps are Web Apps that thanks to modern browser features,
give users an experience similar to native mobile apps.

As described by Google web.dev, on the web platform you can create and
run applications to reach anyone, anywhere and on any device with a single
codebase. On the other hand, platform specific applications (like mobile
native apps) are very rich and reliable. They work regardless of network
connection. They can interact with the camera, read your contacts, share
your calendar and many others. Progressive Web Apps fit in the middle of
these. They can deliver enhanced capabilities like working offline, be reliable,
installable and receive push notifications, like platform specific apps. The
good thing is that they run on a browser. This is possible thanks to a
technology implemented by modern browsers called Service Worker. The
Service Worker specification was developed by engineers from Google, Mozilla
and Samsung and released in 2014. As you can see Apple, the other big
player, was not involved. However, Safari does support it. We will describe
this technology in the next chapter.

1.3 Capabilities of Progressive Web Apps

Thanks to the service worker and other features that browsers have implemented,
we now have several capabilities that allow us to provide a native experience

to end users. In this section, we will briefly describe the main progressive
web apps capabilities. Some of these might not be (or partially) supported in
some browsers, so please make sure you check that as browsers might include
them in future releases.

Installable Progressive web apps can be installed in desktops or in mobile
devices. Installing a PWA in mobile devices gives the users a similar
experience as they have with native apps. An icon launcher is created
the same as a native app, it will be listed in the applications section of
the mobile operating system to be removed just like any other native
app. It will run on its own windows without any browser evidence.

Splash Screen Related to the previous capability, an installed PWA when
launched a splash screen is shown while loading. Same experience as
native apps.

Offline Support Most of the PWA features were created to enable developers
to create web apps that run even when connectivity has gone. The

https://web.dev/what-are-pwas/
https://www.w3.org/TR/2014/WD-service-workers-20141118/

CHAPTER 1. INTRODUCTION 9

Service Worker is the piece of software that enables us to provide offline
capabilities.

Background Sync This capability allows us to defer the access to server-
side APIs once connectivity is back. I mean, under connectivity issues
the web app might continue working, storing data on a browser’s database
like indexedDB and syncing that data once connectivity is back.

Push Notifications This capability enables web apps to receive push notifications
in a similar way that is possible for native apps.

Other Capabilities There are other capabilities like Web Share API that
allows us to share content with other apps. The Contact Picker API
allows us to interact with our contact list to share some limited details.
The Media Session API allows us to interact with media keys on keyboards,
headsets, remote controls, etc. And additionally, it is also possible to
have our PWA on the Android app store, just like a native app. And
the same might occur on the Apple Store, depending on the type of the
application you are building. PWABuilder can help with this.

https://developer.mozilla.org/en-US/docs/Web/API/Web_Share_API
https://developer.mozilla.org/en-US/docs/Web/API/Contact_Picker_API
https://developer.mozilla.org/en-US/docs/Web/API/Media_Session_API
https://www.pwabuilder.com/

Chapter 2

Crafting your First PWA

In this chapter we will convert with a step-by-step approach an existing React
application, called Task List, into a progressive web app. It is a full stack
application with back-end services written in Java.

2.1 Configure the Development Environment

In this section I will show how to configure and set up the Task List application
in your local development machine and explain its architecture. In the
next section we will explore what functionality provides and what React
components were created to build the front-end.

The Task List application was built using the microservice architecture
style. We have two back-end services: the User Authentication and the Task
List. To set up these services, you will need Java 11 (or greater) and maven.
Please, install them if you don’t have them.

There are two ways to set up the system in your local PC: Using a reverse
proxy or using localtunnel.

2.1.1 Using a Reverse Proxy

To set up the development environment we first need to start the back-end
services. Open a console window, go to the directory you would like to clone
the source code to, then run the following commands:

$ git clone https://github.com/enriquemolinari/userauth.git
$ cd userauth

10

https://leanpub.com/codinganarchitecturestyle
https://github.com/enriquemolinari/userauth
https://github.com/enriquemolinari/tasklist
https://github.com/enriquemolinari/tasklist
https://theboroer.github.io/localtunnel-www/

CHAPTER 2. CRAFTING YOUR FIRST PWA 11

$ mvn install
$ mvn exec:java
— -Dsecret=bfhAp4qdm92bDOFI0ZLanC66KgCS8cYVxq/K1SVdjhI=

These commands will clone the UserAuth service source code, then
install all the necessary dependencies, compile the source code and finally
the mvn exec:java will start the UserAuth service on port 1234. The
-Dsecret argument is the secure key used to encrypt the access token. Once
the service finish to start, you will see on the console what is next:

INFO io.javalin.Javalin - Listening on http://localhost:1234/
INFQ io.javalin.Javalin - Javalin started in 247ms \o/

Now, to set up the TaskList back-end service, run the following commands:

$ git clone https://github.com/enriquemolinari/tasklist.git
$ cd tasklist

$ mvn install

$ mvn exec:java

— -Dsecret=bfhAp4qdm92bDOFI0ZLanC66KgCS8cYVxq/K1SVdjhI=

Again, once finished, you will see the following entries in the console
window. This service runs on port 1235.

INFO io.javalin.Javalin - Listening on http://localhost:1235/
INFO io.javalin.Javalin - Javalin started in 247ms \o/

With these in place, you have the back-end services running. Both
services use the Derby embedded (in memory) database. Every time you
start the service, it generates the database schema again and populate it
with some data. The User Authentication database is populated with
two users: guser/guser123 and juser/juser123. Each of them will have some
tasks already created in the Task List database.

Let’s now proceed with the React application, by cloning the starter
project repository, install and serve it, with the following commands:

$ git clone

- https://github.com/enriquemolinari/react-starter-tasklist
$ cd react-starter-tasklist

$ npm install

$ npm start

http://db.apache.org/derby/

CHAPTER 2. CRAFTING YOUR FIRST PWA 12

After that you will have the Task List React application running on port
3000. However, you won’t be able to connect with the back-end services due
to the same-origin policy. The bank-end services don’t have CORS enabled
by default, and even enabling it, since authentication works using cookies,
the browsers won'’t send them if you are on http (to use SameSite: None;
you also have to use Secure). There are a couple of options to solve this. And
yes, this is a bit more complicated than I would like it to be, but it is a real
situation you will face if you want to build a single-page application with a
microservice architecture that uses a cookie-based authentication mechanism.

I will explain two options to make this work. One is using a reverse
proxy and the other is using localtunnel. You will be able to start and
work with the system using any of these options. Use the one you are more
comfortable with.

To go with the first option, you will have to install a reverse proxy.
With a reverse proxy in place, the browser will only talk to it guaranteeing the
same-origin policy. This architecture is depicted in figure 2.2. You can install
any reserve proxy, there are many out there. I will provide configuration files
for both Kong and Nginx. If you decide to install Kong, after installing it, I
recommend configuring it to use the declarative config file (instead of using
a database). To do that, first generate the config file with the following
command:

$ sudo kong config init

Then, you must tell Kong, by using the kong. conf configuration file, that
you want to use a declarative configuration file. Open the file kong. conf and
set the database option to off and the declarative_config option to the
path of your kong.yml file as in the example below:

database = off
declarative_config = {PATH_TO_KONG.YML}

And then, open your kong.yml file, and paste there the following content:

services:
- name: backend-auth
url: http://localhost:1234
routes:
- name: backend-auth-route
paths:

https://github.com/localtunnel/localtunnel
https://konghq.com/install/#kong-community
https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-source/

CHAPTER 2. CRAFTING YOUR FIRST PWA 13

- /auth
- name: backend-tasks
url: http://localhost:1235
routes:
- name: backend-tasks-route
paths:
- /app
- name: frontend
url: http://localhost:3000
routes:
- name: frontend-route
paths:
-/

This will tell Kong to forward requests from http://localhost:8000/auth
to the User Authentication back-end service running on localhost:1234.
From http://localhost:8000/app to the Task List back-end service running
on localhost:1235. And from http://localhost:8000/ to the React
application running on localhost:3000. Finally don’t forget to start the
Kong service:

$ sudo kong start

Now, if you navigate to http://localhost:8000/, you will see the Task
List front-end.

If instead of using Kong, you decide to use Nginx (if you are on Windows
OS this is a good option, due to Kong at the time of writing this book
does not support Windows), please go ahead and install it. After that, find
the nginx config file (it will depend on your OS) and paste the following
configuration:

server {
listen 8000;
listen [::]:8000;

location / {
proxy_pass http://localhost:3000;

location /auth/ {

CHAPTER 2. CRAFTING YOUR FIRST PWA 14

proxy_pass http://localhost:1234/;

location /app/ {
proxy_pass http://localhost:1235/;
}
by

Note that we are forwarding to the same services as we did with Kong.
Pretty similar to that. Make sure nginx is running and then if you navigate
to http://localhost:8000/, you will see the Task List front-end.

2.1.2 Using LocalTunnel

If you don’t want to go with a reverse proxy, the alternative I will propose is
to use localtunnel. Localtunnel allows you to expose your local services with
a public https URL. This option permits to share your apps while you are
working and it will also allow us to test the PWA application using a mobile
device. To install it, run the following command:

$ npm install -g localtunnel

Then, using VS Code (or your favorite editor) open the .env file from the
Task List React application, cloned before in the react-starter-tasklist
directory. In this file we store the URL of the back-end services that the
React application consumes. By default, they will have the URL pointing to
the reverse proxy, like below:

REACT_APP_URI_AUTH=http://localhost:8000/auth
REACT_APP_URI_TASK=http://localhost:8000/app

But, if you are going to use Localtunnel, you have to change the content
of the file, as shown below:

REACT_APP_URI_AUTH=https://authl.loca.lt
REACT_APP_URI_TASK=https://taskl.loca.lt

This change requires to re-start the Node server. Note that instead of
pointing to localhost it will point to real secure URLs. Now, you need to
start a tunnel for each service:

$ 1t --port 3000 --subdomain web-epm

https://theboroer.github.io/localtunnel-www/

CHAPTER 2. CRAFTING YOUR FIRST PWA 15

$ 1t --port 1234 --subdomain authl
$ 1t --port 1235 --subdomain taskl

Each command above creates a public secure URL, starting with the
specified subdomain and each request will forward to the localhost on the
specified port. After setting this up, open a browser and navigate to each
URL: https://web-epm.loca.lt, https://authl.loca.lt and https://
taskl.loca.lt. You will have to read a friendly reminder and click a button
to proceed, as illustrated by figure 2.1.

web-epm.loca.lt

Friendly Reminder

This website is served via a localtunnel. This is just a reminder to always check the website
address you're giving personal, financial, or login details to is actually the real/official website.

Phishing pages often look similar to pages of known banks, social networks, email portals or
other trusted institutions in order to acquire personal information such as usernames,
passwords or credit card details.

Please proceed with caution.

Click to Continue

Figure 2.1: Localtunnel Friendly Reminder

And finally, you have to start the back-end services UserAuth and
TaskList with an additional JVM parameter. Use the following command:

$ mvn exec:java
< -Dsecret=bfhAp4qdm92bDOFI0ZLanC66KgCS8cYVxq/K1SVdjhI=
— -Dtest-with-lt=true

By using the -Dtest-with-1lt=true parameter, we are enabling CORS
for the origin https://web-epm.loca.lt and change cookie parameters to
HttpOnly; domain=loca.lt; Secure; SameSite=None in order to make it work.

CHAPTER 2. CRAFTING YOUR FIRST PWA

16

Then, if you navigate to https://web-epm.loca.lt, you will see the
Task List front-end. This setup will be used later in the book to test our
progressive web app from a mobile device.

Y

Web Server
Nodejs
Port: 3000

UserAuth
Derby Embedded

Figure 2.2: Task List - Microservice Architecture

Task List Ul
React SPA
Y
API Gateway
Reserve Proxy
Port: 8000
User Auth Task List
Javalin Web Javalin Web
Port: 1234 Port: 1235
Y Y
—— =

TaskList
Derby Embedded

2.2 Task List React Application

The main screenshots of the Task List application are illustrated in figures
2.3 and 2.4. In order to access their task lists a user must type first their
username and password (in the login screen 2.3). That will generate a request
to the UserAuth back-end service which validates the user’s credentials, and
if successful it will return an access token. The access token allows the user

https://github.com/enriquemolinari/userauth
https://en.wikipedia.org/wiki/Access_token

CHAPTER 2. CRAFTING YOUR FIRST PWA 17

to access their tasks consuming the Task List back-end services. The token
is stored in an httpOnly cookie. Once authenticated, the user can retrieve
their tasks. They are presented in a list as shown in figure 2.4 with their
expiration date. The expiration date will have different background colors
depending how close to the deadline they are. To mark a task as done (or in
progress), the end user can click on the checkbox. The second task on figure
2.4 shows how a task looks like when it is marked as completed. You can
also delete tasks or add new tasks.

:= Task List
Sign in to start your session

@® | Username

@ Password

Figure 2.3: Login Page - Task List

Now, if you open the source code of the application, you will see, starting
with an uppercase letter, the React components created to build the app.
Let’s explore each component’s responsibility. They are arranged by the
following hierarchy:

Listing 2.1: Task List Components Hierarchy

https://github.com/enriquemolinari/tasklist

CHAPTER 2. CRAFTING YOUR FIRST PWA 18

PWA with React Task List @ juser (Log out)

i= Task List

[Remember to do this, that, and also the other [GE R I RET

‘ . .

[Sister Birthday, do the preparations [GErrrRGELRER

B2 a8 a &

[l Record AC/DC interview

+Add Task

Figure 2.4: juser’s Task List

App.js
| | | |
Menu.js Welcome.js Login.js TaskList.js

AddTask.js

The Welcome. js component is responsible for painting the welcome message
illustrated in figure 2.5. The Menu. js component paints the top header menu,
see figure 2.6 (red square). The TaskList. js component shown in figure 2.6
(green square) is in charge of painting the list of tasks. It also allows the user
to create, delete and mark as done task items. The AddTask. js component
is responsible for painting the modal window with the form to allow the user
to create new tasks (see figure 2.7, yellow square). And finally, the Login. js
component paints the login form shown on figure 2.3.

Looking at the source code again, in the src/server folder, you will
see two JavaScript files: tasks.js and users.js. tasks.js encapsulates
all the fetch requests to the Task List back-end services. While users. js,
encapsulates all the fetch requests to the User Authentication back-end
services. Each of the React components described above that requires access

CHAPTER 2. CRAFTING YOUR FIRST PWA 19

to a back-end service, consumes the functions exposed by tasks.js and
users. js.

PWA with React Task List @ juser (Log out)

Welcome !

Welcome to the Task List Application. This is to demonstrate how to create a Progressive Web App with
React.

Figure 2.5: Welcome.js component

Having the development environment running and an understanding of
the React components that render the Task List application, let’s start
describing what is needed to transform the application into a progressive
web app.

CHAPTER 2. CRAFTING YOUR FIRST PWA 20

PWA with React Task List @ juser (Log out)

i= Task List

] Remember to do this, that, and also the other [GE R REL

c . .

[Sister Birthday, do the preparations [GErrN T REL

[J Record AC/DC interview [@F v X RyRrr

+Add Task

I g & =5 &

Figure 2.6: TaskList.js

Add New Task

YYYY-MM-DD HH:mm

Describe the Task...

Figure 2.7: AddTask.js

CHAPTER 2. CRAFTING YOUR FIRST PWA 21

2.3 The Service Worker

You might have used the tool called create-react-app to create and manage
React applications. Luckily for us, this tool allows us to create Progressive
Web Apps too. To create a new React application with PWA support, you
can run the following command:

$ npx create-react-app my-app --template cra-template-pwa

The Task List application we have described before, was created using
that template!. However, the PWA capabilities are not enabled yet, we
will start with that in a few more paragraphs. When you create a React
application using this tool and with this template, the PWA capabilities are
not enabled by default, you have to enable them.

Progressive Web Apps capabilities are possible thanks to a technology
called Service Worker. All the magic you can incorporate to a progressive
web app is thanks to it. A Service Worker is a JavaScript program that
runs in a background thread. It allows you to implement, in Web Apps,
capabilities similar to those offered by native apps. Before service workers
existed, Web Workers were introduced. By using Web Workers, the browser
allows you to run JavaScript programs in the background without blocking
the main browser thread where your web app is running. The Service Worker
is a Web Worker with steroids?. The most important difference is that they
can intercept any request that your web app does to a remote service.
And with that, you are able to implement web apps with offline support.
This ability to intercept, for instance, a network request is done by using an
event-driven design. The browser triggers events which your service worker
can subscribe to.

Now that you know what a service worker is, let’s see where is it inside
the Task Application source code. Creating a React app using the create-
react-app tool with the cra-template-pwa gives you a React project with three
differences. These differences, luckily, gives you much of the work required to
make your web app work offline. Out of the three differences, the two most
important are the addition of two JavaScript files located in the src folder,
named: service-worker.js and serviceWorkerRegistration.js. Cool!

L After creation I have upgraded all the workbox packages to latest version, which at
the time of writing this book is 6.4.2

2There is a great presentation about why Web Workers exists and their difference
between Service Workers by Nolan Lawson that I recommend you to see.

https://create-react-app.dev/
https://create-react-app.dev/docs/making-a-progressive-web-app
https://create-react-app.dev/docs/making-a-progressive-web-app
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://www.youtube.com/watch?v=OgLemdR65pE

10

11

12

13

14

15

16

17

18

19

20

21

22

CHAPTER 2. CRAFTING YOUR FIRST PWA 22

service-worker. js is the JavaScript program mentioned above, in which I
can subscribe to events and do some work when they are triggered by the
browser (you might be thinking). But what about the servicelWorkerReg
istration.js 7 There is a required step to start using a service worker and
that step is called registration. In the registration step you tell the browser
which is the JavaScript program (the service worker) that you want it to
have it run on a background thread to intercept and control your web app.
It is important to mention that this registration is against a specific origin
(the one that your web app is using). Now, if you open the src/index. js
file, you will see the third difference:

import React from "react';

import { createRoot } from "react-dom/client";
import "./index.css";

import App from "./App";

import * as serviceWorkerRegistration from "./serviceWorkerRegistration";

import { BrowserRouter } from '"react-router-dom";

const container = document.getElementById("root");
const root = createRoot(container);

root.render(
<React.StrictMode>
<BrowserRouter>
<App />
</BrowserRouter>
</React.StrictMode>

)

serviceWorkerRegistration.unregister();

As you might have noted, on line 22 above, the registration of the service
worker is not done by default, as I was mentioned. If you want it, you
have to change that line to call the function register () instead of unreg
ister (). When you change that, the service worker starts the registration
process. During this complex process there are state transitions and events
are triggered. We will describe this by looking at the most important sections
of the service-worker. js and servicellorkerRegistration. js source code.

10

11

12

13

14

15

16

17

18

19

20

CHAPTER 2. CRAFTING YOUR FIRST PWA 23

Let’s have a look at the register () function from the serviceWorkerReg
istration. js:

Listing 2.2: serviceWorkerRegistration.js/register|()

export function register(config) {
if (process.enV.NODE_ENV === "production" &&
< "servicelWorker" in navigator) {

window.addEventListener("load", () => {
const swlUrl =
— “${process.env.PUBLIC_URL}/service-worker.js";

if (isLocalhost) {
checkValidServiceWorker (swUrl, config);
navigator.serviceWorker.ready.then(() => {
console.log(
"This web app is being served cache-first by a
— service " +
"worker. To learn more, visit
< https://cra.link/PWA"
)3
35
} else {
registerValidSW(swUrl, config);
}
3
}

b

The first important thing to note from the code above on line 2, is that
the service worker is registered only in a production build. This means that
for testing a progressive web app, you have to run the following command:

$ npm run build && serve -s build

Note additionally on line 2 the condition "serviceWorker" in navi
gator that checks if the browser you are using supports a service worker.
If not, your web app will work without their benefits. This is part of the
progressive enhancement we talked about on section 1.1. After that, on line
4, we define a subscription to the load event, and inside there, as explained
next, we proceed with the registration. The registration of the service worker

10

11

12

13

14

15

16

17

18

19

CHAPTER 2. CRAFTING YOUR FIRST PWA 24

might trigger in a different thread the download of your static files in order
to cache them. This work might affect the performance of the main thread
that renders the web app, that is the reason to perform the registration after
(hence inside the load event) your web app has been finished loaded®. The
block of code from lines 7 to 17 has a branch where we are on http://local
host/ or not. If we are on http://localhost/ there is a call to the function
checkValidServiceWorker (swUrl, config)* which first will check if the -

process.env.PUBLIC_URL/ /service-worker.js’ exists. You might use
the http://localhost/ URL for many other web apps that might not have
a service worker, so before registering it, it verifies if it exists. If it exists,
it will call the registerValidSW(swUrl, config), in the same way that if
you aren’t on http://localhost/ (else branch on line 15).

Let’s then have a look at the registerValidSW function below:

Listing 2.3: serviceWorkerRegistration.js/register ValidSW

function registerValidSW(swUrl, config) {
navigator.serviceWorker
.register(swUrl)
.then((registration) => {
registration.onupdatefound = () => {
const installingWorker = registration.installing;
if (installingWorker == null) {

return;
b
installingWorker.onstatechange = () => {
if (installingWorker.state === "installed") {

if (navigator.serviceWorker.controller) {
console.log(
"New content is available and will be used
< when all " +
"tabs for this page are closed. See
<~ https://cra.link/PWA."
)3

if (config && config.onUpdate) {

3You might want to read this from Google’s docs: User’s first visit
41 have not added here the source code of this function, because it end up calling to
registerValidSW(swUrl, config).

https://developers.google.com/web/fundamentals/primers/service-workers/registration#a_users_first_visit

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

CHAPTER 2. CRAFTING YOUR FIRST PWA 25

config.onUpdate(registration);
}
} else {
console.log("Content is cached for offline
-~ use.");

if (config && config.onSuccess) {
config.onSuccess(registration);

}

+;
s
)
.catch((error) => {
console.error("Error during service worker
- registration:", error);

IR

}

On line 2 (and 3) above, is where the registration is finally done. The line
navigator.serviceWorker.register (swUrl) will download the servic
e-worker. js file and then is executed (in a context without access to the
DOM). After that, the service worker starts the life cycle shown on figure
2.8, which I will describe while I explain the source code above.

Note that if the registration is successful (service worker downloaded and
executed) it subscribes to the updatefound event, on line 5. That event
is triggered every time the registration of a service worker enters in the
installing state. Since that is exactly what is happening, the function starts
its execution. At this point, and before moving to the installed state, the
service worker is dispatched with the install life cycle event (as shown in
figure 2.8). This event is the place to perform a precache of the static
assets of the application. We will go back to this later. On line 6 above, the
service worker instance is assigned to the installingWorker, and subscribes
to the statechange event (see line 10). Every time a service worker moves
from one state to another the function started at line 11 will be executed.
If we are in the installed state (if condition on line 11), it will check if we
have another service worker active (if condition on line 12). The navigat
or.serviceWorker.controller (see here: controller) property gives you an

https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerContainer/controller

10

11

12

13

14

15

CHAPTER 2. CRAFTING YOUR FIRST PWA 26

instance of the service worker that is currently controlling the web app pages
(the active one). The first time your app register a service worker, it won’t
be any other service worker activated for the same origin. Any subsequent
deployment of the application, due to we will be in the case of trying to
register a service worker when there is one already active, will require some
additional work that we will discuss in the next chapter. For now we will
put the focus on first time registration. So, now that we understand this, we
know that the condition on line 12 will be false, jumping to the line 23 where
"Content is cached for offline use" is printed on the console. At this
point in this process, if you have the service worker subscribed to the install
life cycle event (this is done on the service-worker. js, as we will see later),
whatever you do there, it has finished. And finally, if config.onSuccess is
set, a call to the callback onSuccess is executed. That callback can be used
to show to the end user a toast message informing that the application has
been cached. At some point later, the service worker is dispatched with the
activate life cycle event (used for cleaning up the cache, if necessary), and
after that the service worker becomes activated.

Ok, this was the review of the servicelorkerRegistration. js source
code, while I explained how the service worker lice cycle works. Let’s now
review the source code of the service-worker. js below. As it was mentioned
it is involved in the process explained above because of their subscription to
the install and activate life cycle events.

Listing 2.4: service-worker.js

import { clientsClaim } from "workbox-core";

import { ExpirationPlugin } from "workbox-expiration';

import { precacheAndRoute, createHandlerBoundToURL } from
"workbox-precaching";

import { registerRoute } from "workbox-routing";

import { StaleWhileRevalidate } from "workbox-strategies';

clientsClaim();

precacheAndRoute(self.__WB_MANIFEST);

const fileExtensionRegexp = new RegExp("/[~/7]+\\.[~/]+$");
registerRoute(

({ request, url }) => {

if (request.mode !== "navigate") {

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

CHAPTER 2. CRAFTING YOUR FIRST PWA 27

return false;

¥

if (url.pathname.startsWith("/_")) {
return false;

¥

if (url.pathname.match(fileExtensionRegexp)) {
return false;

}

return true;
3,
createHandlerBoundToURL (process.env.PUBLIC_URL +
<~ "/index.html")
)3

registerRoute(
{url) =
url.origin === self.location.origin &&
< url.pathname.endsWith(".png"),
new StaleWhileRevalidate({
cacheName: "images",
plugins: [
new ExpirationPlugin({ maxEntries: 50 }),
1,
)
)

self.addEventListener("message", (event) => {
if (event.data && event.data.type === "SKIP_WAITING") {
self.skipWaiting();
}
s

The first important thing to mention, and you might have noted from
looking at the import statements above, is that it uses workbox. Workbox
is a set of modules created by Google to help with the implementation of
service workers and caching. As mentioned, the service worker is the place to
implement native apps capabilities. One of them most important capabilities
to implement is the idea that the web app will still work even without

https://developers.google.com/web/tools/workbox/guides/get-started

CHAPTER 2. CRAFTING YOUR FIRST PWA 28

connectivity. In order to do that, we have to cache the web application.
By creating the React application with the cra-template-pwa, we have most
of this job done, and is what I will explain next. One of the features that the
implementation above gives us is to precache® the static content of the web
app. That is: JavaScripts and CSSs files located in the src directory plus the
public/index.html. Additionally, it will precache the JavaScript and CSS
files that your React components imports. The thing is that when we create
a production build with the command $npm run build, webpack takes all
these static files and create some specifics files minimized and combined (see
these details here). To deal with this the create-react-tool uses the workbox-
webpack-plugin. This plugin is integrated in the production build® and it will
take care of generating the list of webpack-generated assets plus compiling a
production version of the service worker, based on the one we have presented
on listing 2.4.

Let me repeat that to make it crystal clear, the service-worker. js file
from listing 2.4, is not the one used in production. A new one will be created
by the production build, based on what is specified in the service-wor
ker.js. This is the reason why the service worker is only activated in a
production build. If we look at line 9 on listing 2.4, the function preca
cheAndRoute (self.__WB_MANIFEST) is the one that precache all the static
assets. The variable self.__WB_MANIFEST is replaced with the URLSs of all
the files in the build/static folder, plus the file public/index . html. Like
below:

precacheAndRoute ([
{url: '/index.html', revision: '383676' },
{url: '/static/css/2.2c85515e.chunk.css', revision: null},
{url: '/static/css/main.53a66fab.chunk.css', revision:
— null},
{url: '/static/js/main.26ceb046.chunk.js', revision: null},

1)

And when the build process creates the production service worker, it will
finally looks like this”:

Sprecaching is the process of caching content before it is even used. In contrast with
dynamic caching where the cache is populated after is requested for the first time

Scheck it here

"This is not exactly how the production source code looks like, it is just to help you
understand how this process works.

https://webpack.js.org/
https://create-react-app.dev/docs/production-build
https://developers.google.com/web/tools/workbox/modules/workbox-webpack-plugin
https://developers.google.com/web/tools/workbox/modules/workbox-webpack-plugin
https://create-react-app.dev/docs/making-a-progressive-web-app

10

11

12

13

14

15

16

CHAPTER 2. CRAFTING YOUR FIRST PWA 29

self.addEventListener('install', (event) => {
if (! ('caches' in self)) return;
event.waitUntil(
caches.open('workbox-precache') .then((cache) => {
return cache.addAll(
[

'/index.html',
'/static/css/2.2c85515e. chunk.css',
'/static/css/main.53a66fab.chunk.css’,
'/static/js/main.26ceb046.chunk. js',

]
)
19)
)

I3

Note from the code above that the precache is executed when the install
event is dispatched, as mentioned before. And to cache content the CacheStorage
is used.

As it was mentioned, a service worker can intercept network requests and
it may respond to the browser with cached content, content from a remote
service (network) or content generated in the service worker. This is called
routing in Workbox terms. So, in addition to precache, the precacheAn
dRoute function will route any static content request, that the web app
perform, to the cache. This is done by adding a listener in the production
service worker to the fetch event®. Something similar to the code below:

self.addEventListener('fetch', (event) => {
event.respondWith (
caches.match(event.request) .then((response) => {
return response || fetch(event.request);

B
)

IR

The code above will check if the resource requested is in the cache (line 3),
and return that if it is there. If not, it will perform a network request using the
fetch function (or condition on line 4). Then, it uses the FetchEvent.respond With

8The fetch event is a functional event, not a life cycle one.

https://developer.mozilla.org/es/docs/Web/API/CacheStorage
https://developers.google.com/web/tools/workbox/modules/workbox-routing
https://developer.mozilla.org/en-US/docs/Web/API/FetchEvent/respondWith

CHAPTER 2. CRAFTING YOUR FIRST PWA 30

method (line 2) to return the response. The response will be either the one
from the cache or the one obtained from the network. The service worker
generated by the production build will use the cache-first strategy, meaning
that if the content exists in the cache, it will be returned from there. Only
when the content is not in the cache, it will be requested through the network.
In the next chapter I will explain how to update the cache when a new release
of the web app is deployed in production.

On lines 12 and 32, there are two method calls to the same function: re |
gisterRoute. The one on line 12 will route any navigational request to the
index.html stored in the cache. And the one on line 32 will register a route
to dynamically cache” png files. This is done due to the two png files we have
on the public folder (React logos). Those are not managed by webpack, so
they are not cached. If you add more images here, if they are pngs they will
be cached. Of course, that method can be customized to cache other types
of files. Note that on the second parameter of the registerRoute function,
we are passing an instance of a class called StaleWhileRevalidate. That
specifies the strategy we want to use to cache the content. With this one,
on each request to a png file, the service worker retrieves them from both
the cache and the network. Responding with the one from the cache (if
available) but updating the cache with the one from the network. There are
other strategies you can use if you need it.

The subscription to the message event on line 43 is used on subsequent
service worker registration. [will explain that in the next chapter. And
finally, on line 7 the clientsClaim() function (docs here). I left this one
to the end, because I wanted to explain how caching works first. What does
this do?” When a service worker is activated it won’t take control of opened
browser tabs, until the next reload. With this method, those open tabs get
controlled by the service worker immediately. This method adds the following
code to the production service worker:

self.addEventListener("activate", (function() {
return self.clients.claim()

¥

Calling the self.clients.claim() method (see official docs here) before
the activation of the service worker will throw an error, that is why it is done

9Runtime or dynamic caching, as opposed to precaching, refers to cache resources once
your application requests them.

https://web.dev/i18n/en/offline-cookbook/#cache-falling-back-to-network
https://developers.google.com/web/fundamentals/primers/service-workers/high-performance-loading#first_what_are_navigation_requests
https://developers.google.com/web/tools/workbox/reference-docs/latest/module-workbox-strategies
https://developers.google.com/web/tools/workbox/modules/workbox-core#clients_claim
https://developer.mozilla.org/en-US/docs/Web/API/Clients/claim

10

11

12

13

14

15

16

17

18

19

20

21

22

CHAPTER 2. CRAFTING YOUR FIRST PWA 31

on the activate event.

That was the explanation of the source code of the servicelorkerReg
istration. js and the service-worker.js. With them, we have the static
content caching resolved. Let’s now jump to show how all of this looks on
the browser. Open the starter project on your favorite editor and change the
file src/index. js to register the service worker, it should looks like below:

import React from '"react';

import { createRoot } from "react-dom/client";

import "./index.css";

import App from "./App";

import * as serviceWorkerRegistration from "./serviceWorkerRegistration";
import { BrowserRouter } from '"react-router-dom";

const container = document.getElementById("root");
const root = createRoot(container);

root.render(
<React.StrictMode>
<BrowserRouter>
<App />
</BrowserRouter>
</React.StrictMode>
);

serviceWorkerRegistration.register();

Then, run the following commands to create a production build and start
serving it with a static server:

Listing 2.5: Creating a Production Build

$ cd react-starter-tasklist
$ npm run build
$ serve -s build/

After that, navigate to http://localhost:3000/ (in Chrome if possible)
and open the development tools, pressing the F12 key. Let’s see how the

CHAPTER 2. CRAFTING YOUR FIRST PWA 32

service worker looks like. In the development tools go to the Application
tab, and on the left menu press the Service Workers item menu (figure 2.9).
Note that it is activated and running. There you have the possibility to
unregister it, update it, and more. We will use some of them on the next
chapter. Now, in the Application Tab, on the left menu go to the Cache
Storage menu item and expand it. As illustrated in figure 2.10, you will see
two caches, one for the precached content and the other one called images'".

That was the explanation about how service workers make it possible
to have web apps with offline capabilities. It was explained along with the
code generated by the create-react-app with the template cra-template-pwa.
In the following section I will explain how to make the Task List application
installable. And after that, we will start showing how to implement full
offline support for web apps.

10Tf you don’t see the images cache, press reload the page. The first time you visit the
home page, since the images cache is not precached, the request to it should happen after
the service worker has been registered. If you don’t like that behavior, you might want to
precache the images too.

CHAPTER 2. CRAFTING YOUR FIRST PWA

Registration Process

States Events

Installing

install

Installed
Activating
Activated

Figure 2.8: Service Worker’s Life Cycle

33

CHAPTER 2. CRAFTING YOUR FIRST PWA

[® [] | Elements Console

-

Application

= Local Storage
» 5 Session Storage
» = IndexedDB
= websqL
» & Cockies

4 3

Sources Network Performance Memory | Application | Security » B1

Service Workers

[offline [0 Update on reload [0 Bypass for network

http://localhost:3000/

Source service-workerjs

Received 29/1/2022 20:42:39

Status @ #2434 activated and is running stop

Fush Test push message from DevTo

34

&

Network requests Update Unregister

Push

Figure 2.9: Chrome DevTools - Service Worker

[® Q] | FElements Console

-

» & Cookies
= Trust Tokens

Cache
¥ = Cache Storage

= Back-forward Cache

Background Services

1y Background Fetch

A Rackarnond Gune

c

- oot e W M = O

Sources Network Performance Memory | Application | Security » B

X Filter by Path

Name Respons...

findex.html|?_WB_REVISION__=d3839d25247... default
/static/css/2.2c85515e.chunk.css basic
/static/css/main.53a66fab.chunk.css basic
[static/js/2.3cBec9ca.chunk js basic
/static/js/main.28416ac7.chunk.js basic
/static/js/runtime-main.7b0ce5c5.js basic
/static/media/bootstrap-icons.1e23936a.woff2 basic
/static/media/bootstrap-icons.5747cea3.woff basic

, Totalentries: 8

Content-Type | Content-L.. Time Cac..
text/html; ch.. 0]29/1/202..
text/css; cha... 0| 29/1/202..
text/css; cha... 685 29/1/202..
application/j... 0| 29/1/202..
application/j... 0 29/1/202..
application/j... 0| 29/1/202..
font/woff2 83,304 29/1/202..
apolication/f... 111.976 | 29/1/202...

Figure 2.10: Chrome DevTools - Cached content

L I

Vary Hea...
Accept-E..
Accept-E..
Accept-E..
Accept-E..
Accept-E..
Accept-E..

Ak

CHAPTER 2. CRAFTING YOUR FIRST PWA 35

2.4 Making the Web App Installable

In addition to having a successfully registered and activated service worker,
there is one more thing you have to do if you want your web app to be
installable. You have to define a manifest file. The manifest file contains
information about the web app in a JSON format. It gives to the browser
where the web app is running, information about how it should work and
looks to the end users once installed or bookmarked.

Like with the service worker, we have the manifest file created thanks to
the create-react-app tool, we just need to change it a little bit. If you open
the manifest. json file located in the public directory of the React starter
project, you will see the following content:

{
"short_name": "React App",
"name": "Create React App Sample",
"icons": [
{
"src": "favicon.ico",
"sizes": "64x64 32x32 24x24 16x16",
"type": "image/x-icon"
3,
{
"src": "logol92.png",
"type": "image/png",
"sizes": "192x192"
3,
{
"src": "logob12.png",
"type": "image/png",
"sizes": "512x512"
}
1,
"start_url": ".",
"display": "standalone",
"theme_color": "#000000",
"background_color": "#Effffff"
b

Below is the explanation of each property from the file above. There are
others described here that might be useful to you.

https://developer.mozilla.org/en-US/docs/Web/Manifest
https://developer.mozilla.org/en-US/docs/Web/Manifest

CHAPTER 2. CRAFTING YOUR FIRST PWA 36

short name The name of the application used when there is not enough
space for the name.

name The name of the application. This one or the short name must be
specified.

icons Application icons. Different sizes are provided to be used in different
contexts. For Chromium browsers, at minimum, you have to provide
icons of 192 x 192 and 512 x 512 pixels.

start _url It is the home URL used when the web app is launched.

display This property is used to determine how much of the browser Ul
is shown to the user when the web app is launched. The available
options are: browser (when the full browser window is shown), minimal-
ui (minimal browser header, depending on the browser is how much
of it is shown), standalone (no browser header is shown, it will display
your device header like happens with native apps), and fullscreen (when
the app is full-screened).

theme color It tells the browser which color to use to surrounds the web
app. In Android, this color is seen in the header that surround the web
app when you tap on the task switcher of your mobile phone.

background color The background color of the web app before styling is
applied. This background color is used on the splash screen (the screen
displayed while the web app is loading).

Let’s do some changes to the default manifest file to adapt it to the Task
List web app and then see how it looks on a mobile device. Proceed with the
following changes:

e Change the value of short name to Task List.
e Change the value of name to Task List Progressive Web App.

e Remove the React logo icons from the public folder: logo192.png and
logo512.png. And save the new ones, by obtaining them following the
links: tasklist192.png y tasklist512.png.

e Change the manifest adding the new icons file names to the icons
property.

e Replace the favicon.ico (react logo), with this one: favicon.ico.

https://github.com/enriquemolinari/react-pwa-tasklist-v1/blob/main/public/tasklist192.png
https://github.com/enriquemolinari/react-pwa-tasklist-v1/blob/main/public/tasklist512.png
https://github.com/enriquemolinari/react-pwa-tasklist-v1/blob/main/public/favicon.ico

CHAPTER 2. CRAFTING YOUR FIRST PWA 37

e And finally, in the public/index.html change the apple-touch-icon link
element to point to %PUBLIC_URL}/tasklist192.png. This is what
iOS uses as a home screen icon.

The new manifest file should looks like the one below:

{
"short_name": "Task List",
"name": "Task List Progressive Web App",
"icons": [
{
"src": "favicon.ico",
"sizes": "64x64 32x32 24x24 16x16",
"type": "image/x-icon"
3,
{
"src": "tasklist192.png",
"type": "image/png",
"sizes": "192x192"
3,
{
"src": "tasklistb512.png",
"type": "image/png",
"sizes": "b512x512"
+
1,
"start_url": ".",
"display": "standalone",
"theme_color": "#000000",
"background_color": "#ffffff"
}

Let’s now build and serve the React application by running the commands
on 2.5. Then set up the system using localtunnel as it was explained on
section 2.1.2. Finally, with your mobile phone (it was tested on Android)
navigate to: https://web-epm.loca.lt/. You will see the "Add Task List
to Home screen" message as shown in figure 2.11. Note that it is using one
icon (the smaller one and scaled) and the short name from the manifest. If
you tap in the "Add Task List to Home screen", you will be presented with
a confirmation dialog as shown in figure 2.12. Note that in that dialog the
manifest’s name is used to show the web app name. Once you confirm, by

CHAPTER 2. CRAFTING YOUR FIRST PWA 38

tapping on the install link, the web app gets installed. On your mobile phone,
you will see the icon that launches the app like you have for any other native
app, as illustrated on figure 2.13. If you launch the app, you will immediately
see the splash screen shown on figure 2.14. Once the web app finishes loading,
the splash screen disappears and you will see the welcome screen of the Task
List application.

With few minor adjustments to the code generated by the create-react-
app tool, the web app is now installable. In the next section we will improve
the user experience of the web app once there is no connectivity.

https://en.wikipedia.org/wiki/Splash_screen

CHAPTER 2. CRAFTING YOUR FIRST PWA

e BG 20 7 .a63%m14:02

(> @& web-epm.loca.lt

PWA with React —
Welcome !

Welcome to the Task List Application.
This is to demonstrate how to create a
Progressive Web App with React

. Add Task List to Home screen X

Figure 2.11: Add to Home Screen

39

CHAPTER 2. CRAFTING YOUR FIRST PWA 40

BG 20 ¥.63%E14:02

Install app

Task List Progressive Web
App

web-epm.loca.lt

Cancel Install

Figure 2.12: Confirm Install

CHAPTER 2. CRAFTING YOUR FIRST PWA

BE 20 7 67%s14:08

=

Task List

Messages

Figure 2.13: Home Icon

41

CHAPTER 2. CRAFTING YOUR FIRST PWA

BG 20 T .062%m14:06

Task List Progressive Web App

Figure 2.14: Splash Screen

42

10

11

12

13

CHAPTER 2. CRAFTING YOUR FIRST PWA 43

2.5 Supporting Offline

At this point the Task List application is installable, cool!. But if we try
to use the application, while we are offline, it will crash. This experience
is not really nice for a web app that should look like a native app. Let’s
fix it. We first have to decide if we want to just show a fancy screen to
inform the user that the connectivity is lost, or in addition to that, we want
to provide some functionality. With very little effort we can provide some of
the Task List functionality. We would like our end users to be able to see
their tasks while they are offline. To be able to do that we have, somehow,
to have the tasks stored in the cache. To implement that, we have to change
the service worker to intercept the fetch request in order to cache the tasks
every time they are retrieved from the remote service. And in the case of
the remote service becoming unreachable, (due to connectivity issues) then,
we will return the tasks from the cache. In other words, we are going to
implement the Network First strategy. The network first strategy will first
try to get the data from the remote service. If that is successful, the cache is
updated and the data is returned to the browser. If not, the data is obtained
from the cache and returned to the browser. This is described by google in
Network falling back to cache.

Let’s see the changes to the service-worker.js below to implement
what was just explained:

Listing 2.6: Task List Network First Strategy Caching

self.addEventListener("fetch", (e) => {
if (e.request.method === "GET" &&
< e.request.url.index0f ("/tasks") !== -1) {
e.respondWith(
fetchWithTimeout (e.request)
.then((fetchResponse) => {
return caches.open('"latest-tasks").then((cache) =>
- A
cache.put(e.request, fetchResponse.clone());
return fetchResponse;
35
D
.catch(() => {
return caches.match(e.request).then((response) =>
- A

if (response) {

https://web.dev/i18n/en/offline-cookbook/#network-falling-back-to-cache

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

CHAPTER 2. CRAFTING YOUR FIRST PWA 44

return response;

}
return new Response('{"tasks":[]}', {
headers: { "Content-Type": "application/json"
-),
I
s
i)
)
b
1)

async function fetchWithTimeout(resource) {
const controller = new AbortController();
const id = setTimeout(() => controller.abort(), 1000
o);
const response = await fetch(resource, {
signal: controller.signal,
b
clearTimeout (id) ;
return response;

by

On line 1 above we are subscribing to the fetch event. That event is
triggered every time a fetch request is executed by the browser. The if
condition on line 2 will ignore all the fetch requests done by the application
except the one that retrieves the task list. In case that condition is satisfied
(retrieve tasks is executed), the line 3 will be executed. It will first try to
fetch the tasks from the network (line 4), using a function defined there
to abort the request if it takes longer than one second. If the request is
completed within one second, the cache is populated with the response (line
7) and the response is returned to the browser (line 8). Note that from here,
the flow continues on the first .then() of the retrieve function from the
file src/server/tasks.js (line 35 on the starter project). If there is no
connectivity (or a very poor one) the catch on line 11 is executed. It will
first find the response on the cache (line 12) and if there is a response stored
for that request, it is returned (line 14). If there is no entry or the cache is
empty, it will return a Response with an empty task array (line 16). The
caches.match(...) returns a Promise that resolves to a Response with the
first matching request or undefined if there is no match (that is why I put
the if statement on line 13). Additionally, it is important to mention that

https://developer.mozilla.org/en-US/docs/Web/API/AbortController

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

CHAPTER 2. CRAFTING YOUR FIRST PWA 45

the e.respondWith on line 3 expects as argument a Response or a Promise
that resolves to a Response. Make sure you always provide that. This is a
home made implementation of the Network First strategy.

However, instead of the above implementation and since we are using
workbox, we will take advantage of their utilities. We will use the registerRoute
method. We will register the retrieve tasks URL and the handler will be the
NetworkFirst strategy class. See the code below:

Listing 2.7: Network First Strategy using Workbox

const pluginCallbacks = {
handlerDidError: async () => {
return new Response('{"tasks":[]}', {
headers: { "Content-Type": "application/json" },
s
s
cachedResponseWillBeUsed: async ({ cachedResponse }) => {
console.log("The response comes from the cache");
return cachedResponse;
1,
fetchDidSucceed: async ({ response }) => {
console.log("The response comes from the network");
return response;
3
cacheDidUpdate: async () => {
console.log("cache was updated");
3,
s

registerRoute(
({ url }) => url.pathname.index0f("/tasks") !== -1,
new NetworkFirst({
cacheName: "latest-tasks",
networkTimeoutSeconds: 1,
plugins: [pluginCallbacks],
b

)

The first parameter of the registerRoute above (line 21), is the condition
[wrote on line 2 on listing 2.6. By default, registerRoute will only intercept
requests with the http GET method. If you need to change that, you can use

https://developers.google.com/web/tools/workbox
https://developers.google.com/web/tools/workbox/reference-docs/latest/module-workbox-routing#.registerRoute
https://developers.google.com/web/tools/workbox/reference-docs/latest/module-workbox-strategies.NetworkFirst

CHAPTER 2. CRAFTING YOUR FIRST PWA 46

the third parameter of the registerRoute to specify which http method you
are interested in. In the second parameter we can pass a callback function and
implement something ourselves or use a strategy class. By using an instance
of the NetworkFirst strategy class (line 22), we obtain the same functionality
we have implemented on listing 2.6. The class receives an optional object
as the constructor parameter. In this case we specify how the cache will
be named (we use the same name as before, see line 6 on listing 2.6). In
addition, by specifying the networkTimeoutSeconds, we are telling it to
fallback to the cache if the network request takes longer than one second.
And finally, the plugins property (line 25) allows us to customize how the
strategy behaves under some situations. In our case, the implementation of
the method called handleDidError (line 2) will be called if an error occurs.
The error will occur if there is no connectivity and there is no cache created
yet. If this happens, an empty array is returned to the browser (line 3). The
other implemented methods are just used for debug purposes to prove the
service worker is behaving as expected. We will see that next.

Let’s then incorporate the changes from listing 2.7 into our service
-worker. js file on the starter project. Then, build and serve the React
application by running the commands on 2.5. Start the services and the
reverse proxy as explained in section 2.1.1 '*. Open the browser and navigate
to http://localhost:8000/, you should see the welcome page as shown in
figure 2.5. To verify if the registration of the service worker was successful,
open the browser’s DevTools, and go to the Application tab as shown in figure
2.9. See the text of the status (green) "#NNNN activated and is running".
Checked this, we can proceed testing the application. To retrieve the list
of tasks you will first need to sign in. Go click the Sign in link, enter the
user/password: juser/juser123. Once authenticated, press the Task List link.
If you open the browser’s DevTools again and go to the Network tab, you
will see the tasks request with a small icon (referring to the service worker),
as shown in figure 2.15. That means that the request passes through the
service worker. This also means that the latest-tasks cache was created
and populated (and will be updated every time we retrieve the task list
from the network). Let’s check that, on the browser’s DevTools go to the
Application tab and on the left menu expand the Cache Storage. You will
see the latest-tasks cache as shown in figure 2.16. Finally, on the Console
Tab, you will see the messages: The response comes from the network
and cache was updated.

1 Or use the local tunnel set up on section 2.1.2. Just make sure to use the correct URL
to navigate the application.

https://developers.google.com/web/tools/workbox/modules/workbox-strategies
https://developers.google.com/web/tools/workbox/guides/using-plugins

CHAPTER 2. CRAFTING YOUR FIRST PWA 47

Now that we have checked that the cache was created, we can test the
changes we have made to the service worker. The browser’s DevTools allows
us to emulate different connectivity presets. We will use that to emulate an
offline situation. Open the browser’s DevTools and go to the Network tab.
Find the dropdown, which by default is in "No throttling", and expand it.
See figure 2.17. Choose the Offline option and reload the task list. You won’t
note any difference, however, the list of tasks were retrieved from the cache.
If you go to the Console tab on the browser’s DevTools, you will now see the
message The response comes from the cache.

[w ﬂ Elements Console Sources Performance Memory Application Security » B1 o : x

® ® | ¥ Q | (OPreservelog | [J Disable cache Nothrottling v = | # # o
|Filter | [Invert Hide data URLs All Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other

[J Has blocked cookies] Blocked Requests (] 3rd-party requests
| 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms 70 ms 80 ms 90 ms 100 ms 110
Name Status Type Initiator Size Time Waterfall 'y

tasks 200 fetch tasks.js:32 (Service... 28 ms
[J @ tasks 200 fetch fetchWrapper.js:98 579 B 22ms | O

2requests | 579 B transferred | 830 B resources

Figure 2.15: Chrome DevTools - Task List from Service Worker

= o Elements Console Sources Network Performance Memory Application Security b B1 s X

R LUUmIES

“ © X FiterbyPath
Name Response-Type 4 Content-T. ContentL. Time Cac.. VaryHea..
Cache 0 | /app/tasks basic | applicatio... 414 12/2/202..

= Trust Tokens

v = Cache Storage

=& workbox-precache-v2-http:/1
images - http://localhost:800
test-tasks - http://localhost

Background Services
ty Background Fetch

& Background Sync =

- " h
Notifications Total entries: 1

»

Figure 2.16: Chrome DevTools - latest-tasks cache populated

We have improved how the application manages the retrieval of the task
list under connectivity issues. Now, we will do some additional improvements.

CHAPTER 2. CRAFTING YOUR FIRST PWA 48

= 4l Elements Console Sources Metwork Performance Memory Application » B1 f o] X
® ® | ¥ O | [JPreservelog | [Disable cache Mothrotting v = | 4+ ¥ e
Filter O Invert Hide data URLs| Disabled JS CSS Img Media Font Doc WS Wasm Manifest Other

No Throttling
[J Has blocked cookies [] Blocked Requests (] 3rd-party| presets

Fast 3G

10 ms 20 ms 30 ms 40 ms Slow 3G 3 70 ms 80 ms 90 ms: 100 ms
Offline

Custom
Add...

Perform a request or hit Ctrl+R to record the reload.

Figure 2.17: Chrome DevTools - Network Presets

First, we will install a package I have created to help us detect when we
are offline. With that installed, we will use it to inform the user about
connectivity issues and also to disable the actions from the task list grid.
The package called react-hook-offline-detector is a custom hook that uses
a combination of the navigator.onLine property and a polling request with
timeout. The polling is necessary because, as it is described by MDN, the
navigator.onLine might give you false positives'?. Additionally, it might
happen that you are online but under a very low or unreliable connectivity
(called Lie-fi). In that case the hook will switch the status from online to
offline in order to handle that better, instead of having the end user to wait
while resources are loaded, which degrades UX.

Let’s proceed with the installation of the package in the starter project,
by running the following command:

$ npm install Q@enrique.molinari/react-hook-offline-detector

Let’s also install react-toastify to present a message to the end user when
connectivity status changes:

$ npm install react-toastify

Let’s now create a React component that will use react-toastify to present
a message to the user when the connectivity is lost. In the src folder of the
starter project, create a file called OfflineAlert.js. Then, copy and paste
there the following implementation:

12As they describe: You could be getting false positives, such as in cases where the
computer is running a virtualization software that has virtual ethernet adapters that are
always "connected".

https://www.npmjs.com/package/@enrique.molinari/react-hook-offline-detector
https://reactjs.org/docs/hooks-custom.html
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/onLine
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/onLine
https://developers.google.com/web/fundamentals/performance/poor-connectivity#lie-fi
https://github.com/fkhadra/react-toastify

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

CHAPTER 2. CRAFTING YOUR FIRST PWA

Listing 2.8: Offline Message Component

import React, { useEffect } from "react";

import { ToastContainer, toast } from "react-toastify";

import "react-toastify/dist/ReactToastify.css";

export default function OfflineAlert({ offline }) {
const toastId = React.useRef(null);
const wasOffline = React.useRef(false);

useEffect (() => {
if (offline) {
wasOffline.current = true;
toastId.current = toast.warn(

"There is no Internet connection. Veryfing...",

{
position: toast.POSITION.TOP_CENTER,
autoClose: false,
}
);
} else {

toast.dismiss(toastId.current);
if (wasOffline.current)

toast.info("Internet connection is back!", {

position: toast.POSITION.TOP_CENTER,
autoClose: true,
b;
wasOffline.current = false;

¥

return () => toast.dismiss(toastId.current);
}, [offlinel);

return <ToastContainer />;

¥

Now open the TaskList. js component, we are going to do minor changes
to incorporate the offline detector hook and the 0fflineAlert component.
Below are highlighted the lines of code you have to add to the component.

Listing 2.9: TaskList.js

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

CHAPTER 2. CRAFTING YOUR FIRST PWA 20

import OfflineAlert from "./OfflineAlert";
import { useOffLineDetector } from
< "Q@enrique.molinari/react-hook-offline-detector";

export default function TasksList(props) {
const [tasks, setTasks] = useState({ tasks: [] });
const [show, setShow] = useState(false);
const [error, setError] = useState(null);
const [showAddTask, setShowAddTask] = useState(false);
const [taskToDelete, setTaskToDelete] = useState(0);
const isOnLine = useOffLineDetector ({});

return (
<Container fluid className="mainBody">
<0fflineAlert offline={'!'isOnLine} />
<Alert
show={error}
variant="danger"
onClose={() => setError(null)}
dismissible="true"

<Alert.Heading>0ps...</Alert.Heading>
<p>{error}</p>
</Alert>

</Container>
);
}

The changes are the import statements on lines 3 and 4. A call to the us |
e0ffLineDetector hook on line 12, and the JSX element on line 19 to render
the OfflineAlert component. The custom hook will update the isOnline
state variable each time it detects a change in the connectivity status. When

CHAPTER 2. CRAFTING YOUR FIRST PWA 51

this happens it will trigger the render of the TaskList component, provoking
the render of the 0fflineAlert component. Figure 2.18 illustrates how the

toast message is shown when there is no internet connection®?.

PWA with React Task List @ juser (Log out)
There is no Internet connection.

Veryfing...
= Task List

[J Remember to do this, that, and also the other [CElrrErRLREAT]

O Buy that very important thing

[J Sister Birthday, do the preparations [GErrErEEREAL]

2 = = =

[Record AC/DC interview

+Add Task

x 4 Elements Console Sources Network Performance Memory Application » 16 | B1 o
® ® Y Q | OPreservelog | (] Disable cache | Slow 36 v T+ ¥ o]

x

Figure 2.18: Task List without Connectivity

Let’s now proceed with a few more additional changes to prevent the users
from using the task list functionality when there is no Internet connection.
Below are highlighted the lines I have changed to disable the checkboxes, the
trash icons and the Add Task button.

Listing 2.10: TaskList: Disabling actions

export default function TasksList(props) {

const isOnLine = useOffLineDetector({});

13Note that the browser’s connectivity preset is on Slow 3G, which means that there is
connectivity but is too slow for the default configuration of the offline-detector hook which
is one second.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

CHAPTER 2. CRAFTING YOUR FIRST PWA 52

return (
<Container fluid className="mainBody">
<OfflineAlert offline={!isOnLine} />

<Card>
<Card.Header as="h5">
<i className="bi bi-list-task" /> Task List
</Card.Header>
<Card.Body>
{tasks.tasks.map((t, index) => (
<ListGroup key={index} variant="flush">
<ListGroup.Item className="border-top">
<Form.Check
type="checkbox"
onChange={(e) => handleDoneOrUnDone (e,
< t.done, t.id)}
checked={t.done}
inline={true}
disabled={!isOnLine}
/>
{t.done 7 <span
< className="done">{t.text}
<~ t.text}
{!t.done && (
<Badge variant={status[t.status]}>
<i className="bi bi-clock"></i>
— {t.expirationDate}
</Badge>
)}
{isOnLine && (
<a
title="delete task"
role="button"
onClick={(e) =>
— handleDeleteOpenConfirm(t.id)}

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

CHAPTER 2. CRAFTING YOUR FIRST PWA 23

<i className="float-right bi
< bi-trash"></i>

)}
</ListGroup.Item>
</ListGroup>
D)}
</Card.Body>
<Card.Footer className="text-muted">
<Button
variant="primary float-right"
disabled={!isOnLine}
onClick={handleAddTask}

<i className="bi bi-plus-1g" />
Add Task
</Button>
</Card.Footer>
</Card>

</Container>

)

}

The changes above prevents the users from performing any action that
adds, deletes or modifies the state of the web app. Finally, I will disable the
login /logout link from the Menu. To do that, I have to somehow provide to
the Menu. js component the isOnLine state variable. To make that possible,
since TaskList. js and Menu. js components are siblings (see the component
hierarchy on 2.1), I have to move the use of the useOffLineDetector hook
to the parent component: App.js. And from there, pass the isOnLine value
using props. See the code of the App. js component below:

Listing 2.11: TaskList: Disabling actions

import React from '"react';
import "./App.css";
import TasksList from "./TasksList";

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

CHAPTER 2. CRAFTING YOUR FIRST PWA

import "bootstrap/dist/css/bootstrap.min.css";
import "bootstrap-icons/font/bootstrap-icons.css";
import Menu from "./Menu";

import Login from "./Login';

import Welcome from "./Welcome";

import { Route, Routes } from "react-router-dom";
import { useOffLineDetector } from

« "@enrique.molinari/react-hook-offline-detector";

function App() {
const isOnLine = useOffLineDetector ({});

return (
<Routes>
<Route
path={"/"}
element={
<>
<Menu isOnLine={isOnLine} />
<Welcome />
</>
}
/>
<Route
path={"/tasklist"}
element={
<>
<Menu isOnLine={isOnLine} />
<TasksList isOnLine={isOnLine} />
</>
}
/>

<Route exact path={"/login"} element={<Login />} />

</Routes>
)
b
export default App;

54

You will have to change the TaskList. js component to remove the hook
and change the reference from isOnLine to props.isOnLine!. And finally,

14This is left as an exercise to you. You can see the final version of the component here.

https://github.com/enriquemolinari/react-pwa-tasklist-v1/blob/main/src/TasksList.js

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

CHAPTER 2. CRAFTING YOUR FIRST PWA

make these changes to the Menu. js component:

import
import
import
import
import

export

Listing 2.12: Menu: Disabling login/logout

React from '"react";

Navbar from "react-bootstrap/Navbar';

Nav from "react-bootstrap/Nav";

{ Link, useNavigate } from "react-router-dom";

{ users as usersService } from "./server/users.js";

default function Menu(props) {

const userName = usersService.userName();
const navigate = useNavigate();

function handleLogout(e) {
e.preventDefault();
usersService.logout () .then(() => navigate("/login"));

3

return (
<Navbar bg="light" expand="sm">

<Navbar.Brand href="#">

<Link to="/">PWA with React</Link>

</Navbar.Brand>
<Navbar.Toggle ari#]controls=”basic—navbar—nav” />
<Navbar.Collapse id='"basic-navbar-nav'">
<Nav className="mr-auto">
<Nav.Link href="#">
<Link to="/tasklist'">Task List</Link>
</Nav.Link>
</Nav>
<Nav>
{!userName && props.isOnLine && <Link
— to="/login">Sign in</Link>}
{userName && props.isOnLine && (

<i className="bi bi-person-circle">
— {userName}</i> (Log out)

)}

{userName && !props.isOnLine && (

95

36

37

38

39

40

41

42

CHAPTER 2. CRAFTING YOUR FIRST PWA 26

<i className="bi bi-person-circle">
< {userName}</i>
)}
</Nav>
</Navbar.Collapse>
</Navbar>
);
}

With the changes above, we are removing, when we are offline, the link
that allows a user to login or logout. Figure 2.19 shows how the list of tasks
looks like when the user is offline. Note that features like add a new task or
mark a task as done are disabled.

PWA with React Task List

There is no Internet connection.
Veryfing...

i= Task List

Remember to do this, that, and also the other [CErrRFRIRIET]

Buy that very important thing

Sister Birthday, do the preparations [GEiFrRrFERIAT)

n o AP IOV g
T Fa AT oo Hery

+Add Task

Figure 2.19: Task List Grid - Offline mode

With these changes, we have created a pretty decent progressive web app.
The source code can be downloaded from pwa-v1. In the following chapters
I will show and implement more capabilities.

https://github.com/enriquemolinari/react-pwa-tasklist-v1/

Chapter 3

Handling New Releases

Once you have the first release of a progressive web app on the market and
installed on your clients, how can you handle a new release? Think about it.
You will have all the static assets of the application stored in the browser’s
cache of your clients and the application works with a cache-first strategy.
What should you do to make your application know that there is a new
release deployed on the server? Luckily, there is a mechanism implemented
in the browsers that check if there is a new version of the service worker
on the server (The service worker that, in our case, we registered with the
URL ${process.env.PUBLIC_URL}/service-worker. js. See listing 2.2 at
line 5). This check is executed, according to google if any of the following
happens:

e A navigation to a page

e A functional event such as push and sync, unless there’s been an update
check within the previous 24 hours.

There are two very important points to consider with the explanation
above. First, this check works comparing the service worker file from the
server against the one cached. If there is a difference (a byte-different is
enough) an update process will start (we will talk about this in a bit). If
both service workers are the same, nothing happens. This means that if
you change any file from your application (a css file, or a react component)
but there is no change on the service worker file, the application will not
be updated on the client’s browser. Any new release of your application
must have a change on the service worker file (at least a variable with a
version number that gets incremented on each new release). In our case,
as the production service worker is generated by the production build (by
running $npm run build), we don’t need to worry about it. It is covered

57

https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle?hl=en

CHAPTER 3. HANDLING NEW RELEASES 28

for us. You can test this by doing any change on any React component (not
in the service-worker. js), then create the production build and compare
the version of the production service worker (located inside the build folder)
with the previous one. You will note that a revision property has changed.

And the second important point is that this check will take place only if
the user closes all the browser’s tabs and navigates to the application again
or reloads the page. If due to the nature of the application you are building,
the user keeps the application open without closing or reloading for a long
time there is another option we will discuss later in the section 3.2. For now,
we will assume the user will close the application after using it (either closing
the browser’s tab or close the installed app on mobile or desktop).

Having said that, let’s move to study in the next section how we take
advantage of this check to deploy a new release of a progressive web app on
client browsers.

3.1 The Update Process

In the previous chapter, in section 2.3 we said that the first time your app
registers a service worker, it won’t be any other service worker activated for
the same origin. Any subsequent deployment of the application, due to we
will be in the case of trying to register a service worker when there is one
already active, will require some additional work. Let’s discuss here what
this additional work means.

Suppose we deploy a new version of the application (it could be a change
as simple as a typo in a label). We then create a production build as described
in listing 2.5, and then open the browser and navigate to http://localho
st:8000/. You will note that the change you did on the application won’t
be there (yet). Press the F12 key to open the browser’s DevTools, go to the
Application tab and on the left menu, select the Service Workers item. This
is illustrated on figure 3.1. Highlighted with a red square in figure 3.1 you will
note that there is a service worker #2592 activated and running. That is the
one that is currently controlling the application. And there is another service
worker #2594 waiting to activate. This last one is the new one that has been
installed but not yet activated. Figure 3.2 illustrates this situation. On one
side you have the current service worker activated (green box), controlling
all the clients (browser’s tabs) and on the other side, the new service worker
installed and waiting to be activated (yellow box). The new service worker

CHAPTER 3. HANDLING NEW RELEASES 29

was installed which means that the install event was triggered. As mentioned,
by being subscribed to this event the new service worker creates new entries
in the cache (with the new updated content). It won’t delete anything from
the cache at this point as the application is still being served by the first
service worker and requires those entries. Old entries will be deleted once
the new service worker gets activated. The new service worker will be in the
waiting state until all the clients (browser’s tabs) that are currently controlled
by the first service worker get closed. This mechanism ensures that only
one version of your service worker is running at a time.

At this point, we need a way to handle this situation which requires
shutting down the first service worker and activating the new one. First of
all, it would be nice to inform the user that there is a new version of the
application available. And additionally, give them the option to update it
right away or at some point later. Let’s now implement this.

When the browser detects that there is a new service worker on the server,
it downloads it and the registration process starts again, with the difference
that now there is already a service worker activated. So, if you look again at
the service worker registration source code presented on listing 2.3, on line
13 we know that there is a new service worker waiting to be activated!. This
is detected because at line 11 it is checked that there is a service worker just
installed (the new one) and on line 12 we check if there is currently a service
worker controlling the clients (the current one). So, inside this branch on
line 20 there is a call to the onUpdate callback. A body for that function can
be passed as parameter to the register () function, see line 1 on listing 2.2
(the config argument). We will use that callback to show a message that
informs the user that there is a new version of the application available. We
will implement this message using the react-toastify package that is already
installed in the starter project, since we use it to inform the user when the
internet connection has gone.

The first change we will do is to move the render of the 0fflineAlert
component. Open an editor and remove it from the TaskList component
and add it to the App component, as shown below on line 18:

Listing 3.1: App component

1 ‘ import React from '"react";

I'Note the console log that prints "New content is available and will be used when all
tabs for this page are closed"

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

CHAPTER 3. HANDLING NEW RELEASES

import "./App.css";

import TasksList from "./TasksList";

import "bootstrap/dist/css/bootstrap.min.css";
import "bootstrap-icons/font/bootstrap-icons.css";
import Menu from "./Menu";

import Login from "./Login';

import Welcome from "./Welcome';

import { Route, Routes } from "react-router-dom";
import { useOffLineDetector } from

< "Q@enrique.molinari/react-hook-offline-detector";
import OfflineAlert from "./OfflineAlert";

function App() {
const isOnlLine = useOffLineDetector ({});

return (
<>
<0fflineAlert offline={!'isOnLine} />
<Routes>
<Route
path={"/"}
element={
<>
<Menu isOnLine={isOnLine} />
<Welcome />
</>
}
/>
<Route
path={"/tasklist"}
element={
<>
<Menu isOnLine={isOnLine} />
<TasksList isOnLine={isOnLine} />
</>
}
/>
<Route exact path={"/login"} element={<Login />}
</Routes>
</>

)

/>

60

42

43

44

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

CHAPTER 3. HANDLING NEW RELEASES 61

export default App;

With this change, we will see the toast message not only when the task
list component is rendered but also when the other components are rendered.
Have this in place, let’s apply the following changes to the index. js file:

Listing 3.2: Adding New Content Available Message

import React from "react';

import { createRoot } from "react-dom/client";
import "./index.css";

import App from "./App";

import * as serviceWorkerRegistration from

— "./serviceWorkerRegistration";

import { BrowserRouter } from "react-router-dom";
import "react-toastify/dist/ReactToastify.min.css";
import { toast } from "react-toastify";

import Button from "react-bootstrap/Button';

const Msg = (props) => (
<div>
A new version is available. Click{" "}
<Button size="sm" onClick={() =>
— onAlertToastClick(props.reg)}>

here
</Button>{" "}
to update it now... Or, close this message and the

— application will be
updated the next time you open it.
</div>

)

function onNewRelease(registration) {
toast (<Msg reg={registration} />, {
position: toast.POSITION.BOTTOM_RIGHT,
autoClose: false,
I
}

function onAlertToastClick(registration) {

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

CHAPTER 3. HANDLING NEW RELEASES 62

console.log("Do something with registration");

}

const container = document.getElementById("root");
const root = createRoot(container);

root.render(
<React.StrictMode>
<BrowserRouter>
<App />
</BrowserRouter>
</React.StrictMode>
);

serviceWorkerRegistration.register({ onUpdate: onNewRelease

<~ 1)

On line 44 above, note how now we are passing an object with the
onUpdate property to the service worker registration function. With that,
when there is an update, the function onNewRelease (line 22) will be called
(passing an instance of the service worker that is being registered). On that
function, we are just showing a toast message to the user using the Ms
g component defined on line 11. This component receives as a prop the
instance of the service worker being registered to prepare the code for the
update as we will see later. Now, to see this working in a browser, you first
need to create a production build and start the server (see listing 2.5). Then
navigate to http://localhost:8000/ and open the browser’s DevTools, go
to the Application tab and then to the Service Workers item. On the waiting
service worker press the "skipWaiting" link, as shown in figure 3.3. That will
shutdown the current service worker and activate the new one. Now, close
all the browser’s tabs and go to your favorite editor to do a small change
like removing the console.log print on line 30 (from listing 3.2). This is
just to trigger an update process to now see the toast message. After that,
create a production build and navigate to http://localhost:8000/ with
the browser’s DevTools open. You will now see what the figure 3.4 shows.

Now, what is left to do is to implement the "skip waiting" programmatically
when the user clicks on the "here" button from the toast message (as figure
3.4 depicts). To do that, we will use the message event listener declared
on the service worker on listing 2.4 at line 43. Using the postMessage we
can communicate the application with the service worker. In this case, we

https://developer.mozilla.org/en-US/docs/Web/API/Client/postMessage

CHAPTER 3. HANDLING NEW RELEASES 63

can pass the "SKIP _ WAITING" message and that will discard the current
service worker and promote to active the new one. In your editor, open again

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

the index. js and add the following highlighted changes:
Listing 3.3: Adding New Content Available Message

const Msg = (props) => (
<div>
A new version is available. Click{" "}
<Button size="sm" onClick={() =>
— onAlertToastClick(props.reg)}>
here
</Button>{" "}
to update it now. Or, close this message and the
— application will be
updated the next time you open it.
</div>
)5

function onNewRelease(registration) {
toast(<Msg reg={registration} />, {
position: toast.POSITION.BOTTOM_RIGHT,
autoClose: false,
3
}

function onAlertToastClick(registration) {
registration.waiting.postMessage({ type: "SKIP_WAITING"
<> 1)

navigator.serviceWorker.addEventListener ("controllerchange",
- O =
window.location.reload();

s

const container = document.getElementById("root");
const root = createRoot(container);

root.render(

33

34

35

36

37

38

39

40

CHAPTER 3. HANDLING NEW RELEASES 64

<React.StrictMode>
<BrowserRouter>
<App />
</BrowserRouter>
</React.StrictMode>
);

serviceWorkerRegistration.register({ onUpdate: onNewRelease

— }),

From the code above, when the user click on the "here" button from
the toast message (line 6) to update the version of the application, we call
the onAlertToastClick(registration) function which finally post the |
{"type": "SKIP_WAITING"} message to the service worker in the waiting
state. That message is received by the callback function on listing 2.4 at line
43 which ends up calling the self.skipWaiting() which shuts down the
current service worker and activates the new one.

Finally, starting at line 25 above, we are subscribing to the controlle
rchange event, which will be triggered when the new service worker starts
controlling the clients (browser’s tabs). And when that happens a reload
is executed. This reload is necessary because the version of the application
we are seeing is the previous one as it was controlled and served with the
previous version of the service worker. By reloading, the new service worker
will now serve the application showing the new content.

= Elements Console Sources Network Performance Memory Application Security » B1 o]
Application o)
) Service Workers

B Manifest

£ Service Workers [0 offline [Update onreload (] Bypass for network

£ Storage

http:/localhost:8000/ Network requests Update Unregister

Storage

Source service-workerjs
» £2 Local Storage g

» £ Session Storage Received 12/2/2022 16:43:54

» = IndexedDB
= websaL Status @ #2592 activated and is running stop

» @ Cookies - . . Received 12/2/202 2
= Trust Tokens @ #2594 waiting to activate skipWaiting

h Clients http://localhost:28000/ focus

Figure 3.1: Chrome DevTools - New service Worker Waiting

CHAPTER 3. HANDLING NEW RELEASES 65

New Release - Service Worker

—

Waiting

[w (0] | Elements
Application

B Manifest

£ Service Workers

= Storage

Storage

» E5 Local Storage

» =2 Session Storage
IndexedDB
Web SQL
» @ Cookies

= Trust Tokens

| 3

@

States Events States Events
Installing Installing
Installed Installed
== Activating Activating
-—
|
;
Y
Activated Activated

Figure 3.2: Service Worker Waiting

Network Performance Security » Bl £

Console Sources Memory Application

s

Service Workers

[0 offline [Update onreload (] Bypass for network

http: //localhost:8000/ Network requests Update Unregister

Source

service-worker js

Received 12/2/2022 16:43:54

Status

@ #2592 activated and is running stop

ceived 12/2/9099 19
@ #2594 waiting to activate Received 12/2/202219

http://localhost:8000/ focus

h Clients

Figure 3.3: Chrome DevTools - Skip Waiting

Current and Active Service Worker

CHAPTER 3. HANDLING NEW RELEASES

PWA with React

Welcome!

Welcome to the Task List Application. This is to demonstrate how to create a Pr¢

[® (0] Elements

Application
B Manifest

Lx Service Workers
= Storage

Storage

»

== Local Storage
» EE Session Storage
» = IndexedDB

S web sQL
» & Cookies

£ Trust Tokens

Figure 3.4:

66

Task List

@ juser (Log out)

A new version is available. Click
pgr GCH to update it now. Or, close this
message and the application will be

updated the next time you open it.

Sources Network Performance Memory Application Security Lighthouse &1 i X

Service Workers

O offline [J Updateonreload [J Bypass for network

http:/flocalhost:8000/ Network requests Update Unregister
Source service-worker.js

Received 6/3/2022 22:58:59

Status @ #2781 activated and is running stop

@ #2782 waiting to activate skipWaiting

eceived 6/3/2022 22:59:46

Task List Application - New content available

10

11

12

13

14

15

16

17

18

19

CHAPTER 3. HANDLING NEW RELEASES 67

3.2 Manual Update

If due to the nature of the application, the users will have it open for a long
time, there is a way to programmatically perform the check to see if there
is a new service worker on the server. The ServiceWorkerRegistration API
provides an update method to do exactly that. This method, when called,
will check if there is a new service worker on the server and if there is a byte-
different to the one on the cache it will trigger the update process described
in the previous section. So, an alternative that I recommend is to set up
an interval at registration to perform this check every 1 or 2 hours (or what
you consider is best for you). Open the servicellorkerRegistration.js
file on an editor and on the registerValidSW function add the following

highlighted lines:
Listing 3.4: Adding New Content Available Message

function registerValidSW(swUrl, config) {
navigator.serviceWorker
.register(swUrl)
.then((registration) => {
setInterval(() => {
registration.update();
}, 1000 * 60 * 60 * 2);

registration.onupdatefound = () => {
const installingWorker = registration.installing;
if (installingWorker == null) {
return;

¥

¥

To test this, first of all, change the interval time from two hours to 10
seconds (line 7 above). Create a production build and navigate to http: |
//localhost:8000/. Click the "here" button on the toast message. Now,
without closing the browser’s tab, stop the server. Go to the editor, make any
change to the application and then create the production build again (starting
the server one more time). You will note that now the toast message will

https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/update

CHAPTER 3. HANDLING NEW RELEASES

appear without refreshing.

The full source code is available pwa-v1-update.

68

https://github.com/enriquemolinari/react-pwa-tasklist-v1-with-update

Chapter 4

Incorporating Background Sync

In this chapter we are going to make the Task List application to work
fully offline. All the features described in section 2.2 will work without
connectivity. To make this work, we are going to use the browser’s database
called IndexedDB. In the next section I will describe in detail what is and
how to use IndexedDB, but for now, it is just important to understand that
it will be used to persist the tasks. Instead of consuming Task List’s remote
services, we are going to implement the persistence in this browser’s database.
And to keep the tasks synchronized with the remote storage exposed by Task
List’s services we will take advantage of the Background Sync capability that
the service worker offers.

4.1 The Background Sync Capability

The Background Sync capability (at the time of writing this book supported
by Chrome, Edge and Opera) is pretty easy to use. From the web app you
can trigger a sync by registering an event like below:

Listing 4.1: Registering the Background Sync

navigator.serviceWorker.ready.then((reg) => {
reg.sync.register("sync-queued-data");

s

In the code above, we are registering on the current service worker (obtained
by calling navigator.serviceWorker.ready) the sync event with the tag |
"sync-queued-data". And then, in the service worker file, you can listen to
a sync event like below:

Listing 4.2: Listening to the Background Sync event

69

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

CHAPTER 4. INCORPORATING BACKGROUND SYNC 70

self.addEventListener("sync", (event) => {
event.waitUntil (doSync(event)) ;

s

async function doSync(event) {
if (event.tag === "sync-queued-data") {
}

3

Note on line 1 above that we are listening to the sync event. On line 6,
I query the tag to determine which is the action I need to process. Tags are
used to identify the action to be executed on each event. In a web app you
might need to register a sync event for syncing data and another to send an
email for instance. Tags are used to identify them. The doSync function
must return a Promise, as this is what the event.waitUntil requires. If the
promise resolves the service worker will mark the event as completed. If not,
it will re-try some minutes later.

Having said that, figure 4.1 illustrates how the web app will work. On
the left we have the browser’s thread that is running the web app, storing
tasks in the IndexedDB database and registering sync events. On the right
we have the service worker listening to and processing sync events, obtaining
the data from IndexedDB and sending it to the remote service.

register sync process sync

.
sl Sync Queue Service Worker

Remote Microservices

Figure 4.1: Using Background Sync and IndexedDB

4.2 Using IndexedDB

IndexedDB is a NoSQL database that falls into the key-value category. It
supports transactions which is a required feature for the implementation

https://developer.mozilla.org/en-US/docs/Web/API/ExtendableEvent/waitUntil
https://w3c.github.io/IndexedDB/
https://en.wikipedia.org/wiki/Key%E2%80%93value_database

10

11

12

13

14

15

16

17

18

19

20

21

22

CHAPTER 4. INCORPORATING BACKGROUND SYNC 71

we are going to do in this chapter, as you will see later.

An IndexedDB database has a name (which is associated with the domain /origin)
and a version. When the database is created the first time the version is one.
The version determines how the current structure of the database is.

A database has one or more object stores. The object store is the storage
mechanism of an IndexedDB database. An object store has a list of records
where each record consists of a key and a value (like any other key-value
NoSQL database). Let’s continue showing some code examples to explain
how IndexedDB works.

The example below, listing 4.3, shows how to open a database, create an
object store and insert some data.

Listing 4.3: IndexedDB - Event Based API

const request = indexedDB.open('"peopledb");
let db;

request.onupgradeneeded = function () {
const db = request.result;
const store = db.createObjectStore("people", { keyPath:

o "id" })
store.createIndex("by_name", "name");
store.createIndex("id", "id", { unique: true });

};

request.onsuccess = function () {
db = request.result;

const tx = db.transaction("people", "readwrite");
const store = tx.objectStore("people");

store.put({ name: "Enrique", surname: "Molinari', id: 1
< 1)

store.put ({ name: "Jorge", surname: "Marcos", id: 2 });
store.put({ name: "Nicolas", surname: "Armein", id: 3 });
store.put ({ name: "Josefina", surname: "Alliani", id: 4

— }),

tx.oncomplete = function () {

https://w3c.github.io/IndexedDB/#database
https://w3c.github.io/IndexedDB/#object-store-construct
https://w3c.github.io/IndexedDB/#key
https://w3c.github.io/IndexedDB/#value

23

24

25

CHAPTER 4. INCORPORATING BACKGROUND SYNC 72

console.log("done!");
3
s

On line 1 above, we are opening the database called peopledb. The first
time, if a database with that name does not exist, it will be created. From
looking at the code above, you might have guessed that the IndexedDB API
is event based, meaning that we have to register callbacks on the events we
are interested in. On line 4, we are registering the callback for the onupgr |
adeneeded event. This event is triggered when you open a database with a
new database version (the second parameter of the indexedDB.open). Every
time you need to change the structure of your database (adding/changing
indexes or adding/changing object stores), you have to specify a new version
and that will trigger the onupgradeneeded event. In the example above, on
line 1, the version parameter is not specified and when that is the case one is
the default value. Of course, the very first time you open (and gets created)
a database the onupgradeneeded event is triggered. On line 6 above, I'm
creating an object store called people and defining the id key as the primary
key. On lines 7 and 8, I'm defining two indexes, the first one to search people
by their name and the second one to search people by their primary key.

The onsuccess event, on line 11, is triggered after successfully opening
the database. On line 14 I'm opening a transaction. The first parameter
indicates that the transaction will expand over the people object store and
the second parameter that it will be for reading and writing data. On line
15, I get a reference to the people object store to be used on lines 17, 18,
19 and 20 to create new entries. Note that a JavaScript object is passed
to the store.put method. That JavaScript object must include the key
defined as the primary key (see keyPath on line 6). The primary key is
the only mandatory property that must be included. Finally, on line 22,
I'm registering the tx.oncomplete callback that will be triggered once the
transaction completes.

Figure 4.2 shows the database structure we created with the example
above in the Chrome development tool. Note that it shows the origin, the
version and how many object stores it has. It can also be deleted from the
Delete database button. Figure 4.3 shows the data stored in the people object
store. Note also that hanging from the object store we have the two indexes
created. The indexes are special object stores created to get access to the
data by a specific key. See figure 4.4 that illustrates how the by name index
looks like. Note that another column keyPath: name is added, which is used
every time there is a retrieval by name.

CHAPTER 4. INCORPORATING BACKGROUND SYNC 73

= Ol Elements Console Sources Network Performance Memory — Application Security Lighthouse
Storage peopledb

» == Local Storage

» EE Session Storage

v = IndexedDB Security origin - http:/localhost:9000

» £ peopledb - hitp://localho

p— Version 1
¥ == people
by_name Object stores 1
id
= Web 5QL
> Cookies -
& D Delete database Refresh database
Figure 4.2: IndexedDB - Databases
= O] Elements Console Sources Metwork Performance Memory Application Security Lighthouse
Storage *C Start from key
» == Local Storage it Key (Key path: "1d") Value
» E= Session Storage 0 1 » {name: "Enrique', surname: 'Molimari', id: 1}
+ = IndexedDB 1 2 » {name: 'lorge', surname: 'Marcos', id: 2}
v £ peopledb - http://localho: 2 3 ¥ {name: ‘'Nicolas', surname: 'Armein', id: 3}
5 4 » {name: "Josefina', surname: "Alliani', id: 4}
by_name
id

Figure 4.3: IndexedDB - Object Store People

Instead of using the IndexedDB API directly, we are going to use a very
thin wrapper of it that was developed by Jake Archibald called idb. It is
a promise based API, which simplifies the code that needs to be written to
interact with IndexedDB. Now, to introduce idb, I'm going to show a couple
of examples to help you understand the code that we will write in the next
section to provide full offline support for the Task List application.

Listing 4.4: idb - Open the Database
const DB_NAME = "idbl";

const STORE_NAME = "idb_store";
const DB_VERSION = 1;

const db = await openDB(DB_NAME, DB_VERSION, {
upgrade(db, oldVersion, newVersion, transaction) {

https://github.com/jakearchibald/idb
https://github.com/jakearchibald/idb

10

11

12

13

14

15

16

CHAPTER 4. INCORPORATING BACKGROUND SYNC 74

x 0l Elements Console Sources Network Performance Memory Application Security Lighthouse
SEye - _—

C Start from key
» =2 Local Storage

» =2 Session Storage # Key (Key path: "name") Primary key (Key path: "1d") Value
v = IndexedDB 0 "Enrigue” 1 » {name: "Enrique', surname: 'Molinari',
:E peopledb - http://localhos | 1 "Jorge” 2 » {name: 'Jorge', surname: 'Marcos',
v EE pegp|e 2 "Josefina" 4 » {name: 'Josefina', surname: 'Alliani’,
by_name 3 "Nicolas" 3 » {name: "Nicolas', surname: *Armein', id:

id

Figure 4.4: IndexedDB - by name Index

if (!db.objectStoreNames.contains (STORE_NAME)) {
let dbStore = db.createObjectStore(STORE_NAME, {
keyPath: "id",

B
dbStore.createIndex("id", "id");
}
1,
B

In listing 4.4 we use the openDB method to create a connection to the
IndexedDB database. This method returns a promise that resolves to an
improved IDBDatabase. The openDB method receives as parameter the
database’s name, the version and then an object with the upgrade function.
The upgrade function is called if the version passed as the second parameter
differs from the current version of the created database. This is equivalent
to the onupgradeneeded event function we presented before. We use this
callback function to create the object stores and indexes.

To add objects into an object store we can proceed in the following way
as illustrated on listing 4.5. If you try to add an object with a key that
already exists you will get an error.

Listing 4.5: idb - Add an object
| db.add(STORE_NAME, { id: 1, propl: 1, prop2: 2 });

In case you need to update an object that is already stored, use the put
method as illustrated on listing 4.6. If the key does not exist in the object
store, the put method will incorporate the object into that object store.

x

id: 13

id: 2}

id: 4}
3r

https://w3c.github.io/IndexedDB/#database-interface

CHAPTER 4. INCORPORATING BACKGROUND SYNC 75

Listing 4.6: idb - Update an object
| db.put(STORE_NAME, { id: 1, propl: 130 });

See the following example, listing 4.7, to understand how transactions

works in IndexedDB/idb.

Listing 4.7: idb - Transactions

const tx = db.transaction(STORE_NAME, '"readwrite');
const store = tx.objectStore(STORE_NAME) ;

await store.add({ id: 16, propl: 1, prop2: 2 });
await store.add({ id: 19, propl: 1, prop2: 2 });
await tx.done;

On line 1 above, the first parameter of the transaction method indicates
in which object store the transaction will apply. And with the second
parameter you indicate which kind of transaction you are going to execute.
In this case is a "readwrite" transaction. "readonly" transactions are valid
too. Finally, the done method, on line 5 above, resolves when the transaction
completes successfully, otherwise rejects with an error.

On listing 4.8, I'm opening a database connection that creates two object
stores: STORE_NAME_1 and STORE_NAME_2. Then, on line 23, I'm opening a
transaction. Note that now as the first argument of the transaction method
I'm passing an array with both object store’s names. That indicates that the
transaction will expand both object stores. After that I'm adding objects
to both object stores and finally finishing with the done method as in the
previous listing.

Listing 4.8: idb - Transactions with Two Object Stores

const DB_NAME = "idb2";

const STORE_NAME_1 = "idb_store_1";
const STORE_NAME_2 = "idb_store_2";
const VERSION = 1;

const db = await openDB(DB_NAME, VERSION, {

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

CHAPTER 4. INCORPORATING BACKGROUND SYNC 76

upgrade (db, oldVersion, newVersion, transaction) {
if (!db.objectStoreNames.contains(STORE_NAME_1)) {
let dbStore = db.createObjectStore(STORE_NAME_1, {
keyPath: "id",
1)
dbStore.createIndex("id", "id");
}
if (!db.objectStoreNames.contains(STORE_NAME_2)) {
let dbStore = db.createObjectStore(STORE_NAME_2, {
keyPath: "id",
3
dbStore.createIndex("id", "id");
}
s
1)

const tx = db.transaction([STORE_NAME_1, STORE_NAME_2],
— "readwrite");

const store = tx.objectStore(STORE_NAME_1);

await store.add({ id: 18, propl: 1, prop2: 2 });

await store.add({ id: 10, propl: 1, prop2: 2 });

const store2 = tx.objectStore(STORE_NAME_2);
await store2.add({ id: 2, propl: 11, prop2: 21 });
await store2.add({ id: 22, propl: 12, prop2: 22 });
tx.done.then(() => {

console.log("tx commited successfully");

IR

Transactions across two object stores is something we are going to use
in the next section when we explain the changes applied to the Task List
application. Next, I'm going to show different ways of retrieving objects.

Listing 4.9: idb - Retrieving Objects

await db.get(STORE_NAME, 22);

await db.getKey(STORE_NAME, 22)

10

11

12

13

14

15

16

17

CHAPTER 4. INCORPORATING BACKGROUND SYNC 77

—

await db.getAll(STORE_NAME)

—

await db.getAllKeys(STORE_NAME)

await db.getFromIndex(STORE_NAME, "id", 22)

await db.getAllFromIndex (STORE_NAME, "id")

Finally, see below how to delete an object and clear an entire object store.

Listing 4.10: idb - Delete and Clear

await db.delete(STORE_NAME, 22);

await db.clear (STORE_NAME) ;

4.3 Adding IndexedDB and Background Sync
to Task List

In this section, we will describe step by step the changes we are going to
make to the Task List application to transform it into a fully offline first
Progressive Web App. The repository from the previous chapter pwa-v1-
update will be our starting point.

Figure 4.5 illustrates how we are going to deal with the IndexedDB and
the Background Sync capability. As the figure describes, we are going to
use two object stores. One for the task items called task-store and another
one that we will use as a queue called queue-store. The queue-store will
contain the data required to perform the replication to the back-end service.
Every time we add a new task or we mark a task as done (or in progress)
or we delete a task, we push the change into the queue-store to indicate the
operation that needs to be replicated to the back-end service. That is why
it is important to execute these operations in a transaction. We need to

https://github.com/enriquemolinari/react-pwa-tasklist-v1-with-update
https://github.com/enriquemolinari/react-pwa-tasklist-v1-with-update

CHAPTER 4. INCORPORATING BACKGROUND SYNC 78

be consistent, if we change somehow the task-store, we have to also push
that change into the queue-store. And finally, if the transaction succeeds
we register the Background Sync event. The skeleton code in the listing
4.11 shows how this will be implemented. On line 2 we open a transaction
that expands the two object stores. Then, we do the operation requested
plus pushing the change into the queue-store and finally, on line 6, if the
transaction succeeds we register the Background Sync event. The service
worker will then proceed with the replication if there is connectivity.

if Tx success process sync
ap Sync Queue Service Worker

Task List
Javalin Web
Port: 1235

Syncing

queue-store

i

Figure 4.5: Detailed Architecture

Listing 4.11: Explaining the Detailed Architecture figure with Code

2 const tx = db.transaction([TASK_STORE, QUEUE_STORE],
— "readwrite");

6 tx.done.then(() => {

8 navigator.serviceWorker.ready.then((reg) => {
9 reg.sync.register("sync-queued-data");

10 s

11 s

Let’s move now to make the necessary code changes to implement what we
have described. Looking at the source code project from the previous chapter
pwa-vl-update, in the src/server folder, you will see the tasks. js module
that encapsulates all the fetch requests to the Task List back-end services.

https://github.com/enriquemolinari/react-pwa-tasklist-v1-with-update

10

11

12

13

14

15

16

17

18

CHAPTER 4. INCORPORATING BACKGROUND SYNC 79

This module exposes four functions that are shown on listing 4.12. These
functions are used from the TaskList.js and the AddTask. js components.

Listing 4.12: server/tasks.js exposed functions

return {

doneOrUndone: doneOrUndone,
retrieveAll: retrieve,
delete: deletelne,

addNew: add,

}s

What we are going to do now is to create a folder called 1ocal and then
create a tasks. js module that implements those four functions but using the
idb wrapper of IndexedDB API. Listing 4.13 shows how I have implemented
the tasks. js module.

Listing 4.13: local/tasks.js

import { openDB } from "idb";
import { status } from "./taskStatus";

export let tasks = (function () {
const DB_NAME = "taskdb";
const STORE_DB = "task-store";
const STORE_QUEUE = "queue-store';
const OP_ADD = "add";
const OP_UPDATE = "update";
const OP_DELETE "del";

async function add(expirationDate, text) {
let db = await openIndexedDb() ;
let tx = db.transaction([STORE_DB, STORE_QUEUE],
— "readwrite");
let dbStore = tx.objectStore(STORE_DB);
let syncId = uid();
let id = uid(Q);

https://github.com/jakearchibald/idb

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

CHAPTER 4. INCORPORATING BACKGROUND SYNC 80

X

dbStore.add ({
text: text,
expirationDate: expirationDate,
done: false,
syncld: syncld,
id: id,
s

let queueStore = tx.objectStore(STORE_QUEUE) ;

queueStore.add ({
text: text,
expirationDate: expirationDate,
done: false,
syncld: syncld,
id: id,
op: OP_ADD,
queuedTime: Date.now(),

IR

return tx.done.then(() => {
navigator.serviceWorker.ready.then((reg) => {
reg.sync.register("sync-queued-data');
1)
3

async function deleteOne(taskToDelete) {

let db = await openIndexedDb();

let taskDel = await db.get(STORE_DB, taskToDelete);
let tx = db.transaction([STORE_DB, STORE_QUEUE],

< "readwrite");

await tx.objectStore(STORE_DB).delete(taskToDelete);
let queueStore = tx.objectStore(STORE_QUEUE) ;

queueStore.add ({
text: "',
expirationDate: "",
done: false,
syncIld: taskDel.syncld,
id: uid(),

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

CHAPTER 4. INCORPORATING BACKGROUND SYNC

op: OP_DELETE,
queuedTime: Date.now(),

IR

return tx.done.then(() => {
navigator.serviceWorker.ready.then((reg) => {
reg.sync.register("sync-queued-data');
3
s
}

async function doneOrUndone(done, idTask) {
let db = await openIndexedDb();
let taskUpd = await db.get(STORE_DB, idTask);
taskUpd.done = !done;
taskUpd.id = idTask;
let tx = db.transaction([STORE_DB, STORE_QUEUE],
— '"readwrite");
await tx.objectStore(STORE_DB) .put (taskUpd);
let queueStore = tx.objectStore(STORE_QUEUE) ;

queueStore.add ({
text: "',
expirationDate: "',
done: !done,
syncld: taskUpd.syncld,
id: idTask,
op: OP_UPDATE,
queuedTime: Date.now(),

1)

return tx.done.then(() => {
navigator.serviceWorker.ready.then((reg) => {
reg.sync.register("sync-queued-data');
3
3
}

async function retrieve() {
let db = await openIndexedDb();
db.transaction([STORE_DB], '"readonly");

81

CHAPTER 4. INCORPORATING BACKGROUND SYNC 82

99 let all = await db.getAl1l(STORE_DB);
100 let addedStatus = all.map((item) => {
101 return { ...item, status: status(item.expirationDate)
- 1}
102 }) ’
103 return Promise.resolve({ tasks: addedStatus 1});
104 }
105
106 async function openIndexedDb() {
107 return await openDB(DB_NAME, 1, {
108 upgrade (db) {
109 if (!db.objectStoreNames.contains(STORE_DB)) {
110 let dbStore = db.createObjectStore(STORE_DB, {
111 keyPath: "id",
112 19N
113 }
114 if (!'db.objectStoreNames.contains(STORE_QUEUE)) {
115 let queueStore = db.createObjectStore(STORE_QUEUE,
- A
116 keyPath: "queuedTime",
117 B;
118 }
119 })
120 b
121 }
122
123 function uid() {
124 return Date.now() .toString(36) +
< Math.random() .toString(36) .substring(2) ;
125 }
126
127 return {
128 doneOrUndone: doneOrUndone,
129 retrieveAll: retrieve,
130 delete: deletelne,
131 addNew: add,
132 };
133 HO;

By looking at the implementation of the module I'm sure most of the
code will be familiar to you as I have used the constructions shown in the

CHAPTER 4. INCORPORATING BACKGROUND SYNC 83

previous section. To not be boring, I'm not going to explain line by line
the code above, but the important parts that help you understand how this
works.

First of all, look at the openIndexedDb() function on line 106. Note
that on the upgrade callback, on line 108, I'm creating two object stores.
The task-store that will contain the task items and the queue-store that will
contain the changes made to the task-store to keep it synchronized with the
back-end service. As it was previously explained, these stores are illustrated
on figure 4.5.

On line 12 above, you will see the add function. It basically adds new
task items into the task-store (line 19). Note that in addition to giving to the
new object the primary key id (line 24), I'm adding another unique identifier
called syncId (line 23). It will be used to keep the task in sync with the
back-end database. After that, I'm inserting the change into the queue-store.
In addition to the task data required for the replication, I'm adding the sy
ncld, the op which indicates which operation make the change (an addition
in this case), and the primary key queuedTime which can be ordered to later
apply the changes in the back-end in the same order as they were pushed.

On line 46 you can see the deleteOne function. After deleting the task
from the task-store (line 50), I'm pushing the change into the queue-store. In
this case the important properties are the syncId (it will be the reference to
delete the task on the back-end database) and the op which is delete in this
case. Of course, similar to the previous I added the primary key queuedTime.

On line 70 we have the doneOrUndone function. Following the same
pattern as above, after updating the task (line 76), I push the change into
the queue-store. From the use cases of the application we know that the
only thing we can change of a task is if it is completed or not, so the d
one property is important here plus the syncId, op and the primary key
queuedTime. Finally, note that in all the functions above (add, deleteOne
and doneOrUndone), after making the changes, if the transaction succeeds
registers the Background Sync event.

Those were the command functions that provoked the background sync
service to run. Now, on line 96 we have the retrieve function used to display
the list of tasks. This function gets all the items from the task-store (line 99)
and then creates a new object that incorporates for each task item which
status each task has. That is calculated based on the expiration date. See

10

11

12

13

14

15

CHAPTER 4. INCORPORATING BACKGROUND SYNC 84

below on listing 4.14 how the status function looks like.
Listing 4.14: local/taskStatus.js

export function status(expirationDate) {
const diffInMs = Date.parse(expirationDate) - Date.now();
const diffInDays = diffInMs / (1000 * 60 * 60 * 24);

if (diffInDays <= 2) {
return "DANGER";

}

if (diffInDays > 2 && diffInDays <= 5) {
return "WARNING";

}

if (diffInDays > 5 && diffInDays <= 15) {
return "FINE";

}

return "FUTURE";

b

To see these changes working on the browser we have to change the Add |
Task.js and TaskList.js components to use the local/tasks.js module
instead of the server/tasks. js module. Go ahead and apply these changes.
After that, start the application with the npm start command and navigate
to http://localhost:8000/. You will first need to sign in and then go to
the Task List. Of course, until you don’t add new entries the list will be
empty. However, as illustrated in figure 4.6 note that the taskdb database
is created with both object stores. They are created because the TaskList |
. js component invokes the local/tasks.js/retrieve function which first
opens the database and since the database is not there yet it gets created.

Now, if we add a task, see how they look on both object stores in figures
4.7 and 4.8.

And if we delete that task, the task-store will be empty but the queue-store
will have two entries now. See figure 4.9. Note that there are two entries,
one that corresponds to the add operation we did, and the last one that
corresponds to the delete operation. See the property op:"del".

Now that we have all the operations implemented using IndexedDB it is
time to add the Background Sync service. In order to synchronize the data

the Task List back-end exposes the following POST APT https://{host}/tasks/bulk,

which expects as POST’s body a list of queue-store objects. Like below:
[

https://github.com/enriquemolinari/tasklist

CHAPTER 4. INCORPORATING BACKGROUND SYNC 85

PWA with React Task List @ juser (Log out)

‘= Task List

+Add Task

= 4l Elements Console Sources MNetwork Performance Memory Application Security b B1 e T

FoEE LULdl SwUdye

» £ Session Storage “c Start from key o
v £ IndexedDB # Key (Key path: "queuedTime") Valua
+ = taskdb - http://localhost:8000

S5 queue-store

=& task-store

= WebsaL - Total entries: 0

Figure 4.6: Both object stores created and empty

"text": "That very important thing !",
"expirationDate": "2022-10-22 15:00",
"done": false,

"syncId": "149wmop164at0t3yOvc",

"id": "149wmopl42wy9g39a04",

"op": "add",

"queuedTime": 1654953577093

"text": "",

"expirationDate": "",

"done": false,

"syncId": "149wmop164at0t3yOvc",
"id": "149wq99pst66giod4",

"op": "del",

"queuedTime": 1654953743725

Here you can find the implementation of the back-end service. It is pretty
simple. It will first reorder the list by queuedTime and in that order will apply
each operation. Everything wrapped in a transaction, which means that all
will be applied or nothing. To consume this API I'm going to add a new

https://github.com/enriquemolinari/tasklist/blob/main/src/main/java/ar/jpa/JpaTasks.java

10

11

12

13

14

15

16

CHAPTER 4. INCORPORATING BACKGROUND SYNC 86

PWA with React Task List @ juser (Log out)
i= Task List
[That very important thing ! o

.

= Elements Console Sources Network Performance Memory Application Security » B1 o]
FEE LWldl Sundye - e —
» =2 Session Storage &} Start from key Q0 X
v = IndexedDB # | Key(Key path: "1d") Value
+ = taskdb - http://localhost:8000 0 "149wmop 14 2wy9g39a04" v {text: 'That very important thing !", expirationDate:

done: false

expirationDate: "2022-18-22 15:80"
id: "149wmopld2wy9g3dand"”

syncld: "14%9wmepl&datOtIyBuc”
text: "That very importamt thing !"

arh - Total entries: 1
Aarne

Figure 4.7: task-store with one entry

function called syncTasks (). See the details on listing 4.15 below.

Listing 4.15: server/syncTasks.js

export let syncTasks = (function () {
const apiTask = process.env.REACT_APP_URI_TASK;

function bulk(tasks) {
return fetch(apiTask + "/tasks/bulk", {
method: "POST",
credentials: "include",
body: JSON.stringify(tasks),
headers: {

"Content-type": "application/json; charset=UTF-8",
s
o)
then((r) => {
if (r.status === 401)

return Promise.reject({
status: 401,

"20z

17

18

19

20

21

22

23

24

25

26

27

28

29

CHAPTER 4. INCORPORATING BACKGROUND SYNC 87

PWA with React Task List @ juser (Log out)

= Task List

[That very important thing !

= il Elements Console Sources Network Performance Memory Application Security b B1
F == LuLdl Stuidye - =
» EE Session Storage c Start from key o X
v = IndexedDB # Key(Key path: "gueuedTime") Value
+ = taskdb - http://localhost:8000 0 1654953577893 v {text: 'That very important thing !", expirationDate: '

expirationDate: "2022-108-22 15:08"

== task-store
== id: "149wmopld2wy9g3dadd”

= websaL op: "add"
» @ Cookies queuedTime: 1654953577093
= Trust Tokens syncId: "14%wmoplédatBt3yOwc”
= At s BTheads wrmemr Smemehammd khdma 0
- Total entries: 1
Marhea

Figure 4.8: queue-store with one entry

msg: "You are not authenticated",
I
if (!r.ok) return Promise.reject(r.status);
return r.json();
H
.then((json) => Promise.resolve(json))
.catch((e) => Promise.reject(e));

return {
bulkTasks: bulk,
};
HO;

The function exported above receives a list of tasks as parameters, that
we will obtain, as we will see later, from the queue-store and creates a fetch
POST request. If the request succeeds it will resolve, otherwise reject. Add
this module to the project in the server/syncTasks. js file

Let’s now add the changes to the service worker. In the listing 4.16 below,

10

11

12

13

CHAPTER 4. INCORPORATING BACKGROUND SYNC 88

PWA with React Task List @ juser (Log out)

= Task List

+Add Task

= @l Elements Console Sources Network Performance Memory Application Security » Bl £ : 3
F EE Luldl Stuniayc - B —
» ES Session Storage G Start from key e x
v = IndexedDB # Key (Key path: "queuedTime") Value
» = taskdb - http://localhost:8000 0 1654953577893 » {text: 'That wery important thing !', expirationDate: '
£Z queue-store 1 1654953743725 v {text: '', expirationDate: '', done: false, syncId: '14
== task-store done: false
= Web 30L expirationDate: "
- id: "149wgq99pstBbgiodd”
» @ Cookies wWqdSpsthbg

op: “del"
queuedTime: 1654953743725
syncld: "14%9wmoplE4at@t3vOvc"”

= Trust Tokens

Cache - Total entries: 2

Figure 4.9: queue-store with two entries while task-store is empty

you will find the changes to add the sync event listener and the doSync ()
function that does the syncing work.

Listing 4.16: Service Worker Sync Event Listener

self.addEventListener("sync", (event) => {
event.waitUntil (doSync(event)) ;

s

async function doSync(event) {
console.log("it was executed...", event);
if (event.tag === "sync-queued-data") {

let all = await tasksLocalService.getAllQueued();
return syncServer.bulkTasks(all).then(() => {
return tasksLocalService.deleteAllQueued();
b;
}
}

Note above, on line 7, if the event . tag is equals to sync-queued-data, it
will retrieve all the queued items from the queue-store and call the syncServ

CHAPTER 4. INCORPORATING BACKGROUND SYNC 89

er.bulkTasks. Finally, if that remote API call resolves, all the queued items
from the queue-store gets deleted. Below is the implementation of the 1o
cal/tasks. js/deleteAllQueued() and local/tasks. js/getAl1lQueued()
functions.

Listing 4.17: Retrieve all and Delete all queued items

async function deleteAllQueued() {
let db = await openIndexedDb();
return await db.clear (STORE_QUEUE) ;
}

async function getAllQueued() {

let db = await openIndexedDb();
return await db.getAll (STORE_QUEUE) ;
}

After adding all these changes to the project we are ready to see it
working. Create a production build and start the project. Every time you
add, update or delete a task, if there is connectivity, the sync event will be
triggered logging in the Chrome dev tool console the action, as illustrated in
figure 4.10.

Now, suppose your phone crashes and you buy a new one. You will want
to have all your tasks back in your new phone, right?. Let’s add a simple
button on the Welcome. js component that performs this job. Additionally,
I will add another button that prints on the console what are the tasks we
have on the server. This one is only for debugging purposes so you can verify
easily that the changes are correctly replicated. On the local/tasks. js add
and expose the following function:

Listing 4.18: Start from Server function

async function startFromServer() {
let all = await tasksService.retrieveAll();
let promisesAdd = [];
let db = await openIndexedDb();
let tx = db.transaction([STORE_DB, STORE_QUEUE],
< "readwrite");
tx.objectStore (STORE_DB) .clear();
tx.objectStore (STORE_QUEUE) .clear();
all.tasks.forEach((task) => {
promisesAdd.push(tx.objectStore (STORE_DB) .add(task));

CHAPTER 4. INCORPORATING BACKGROUND SYNC 90

PWA with React Task List @ juser (Log out)
i= Task List
[J That another very important thing ! [GEVrR AL FLr] jm]
+ Add Task
= Al Elements Console Sources Network Performance Memory — Application » B e ox
¥ ® topy | @ | Filter Alllevels v || 1lssue: @1 o
it was executed... service-worker.js? [sm]:118
SyncEvent {isTrusted: true, tag: 'sync-queued-data', lastChance: false, type: "sync', target: ServiceWorke
rGlobalScope, .}

Figure 4.10: Sync Event log in Chrome Dev tool

10

11

12

13

10

11

B
await Promise.all(promisesAdd);
return tx.done;

3

And replace the Welcome. js component with the one below:

Listing 4.19: Welcome.js

import Container from "react-bootstrap/Container";

import { uselLocation } from "react-router-dom";

import Card from "react-bootstrap/Card";

import { Button } from "react-bootstrap";

import { tasks as tasksService } from "./server/tasks.js";

import { tasks as tasksLocalService } from
"./local/tasks. js";

import { ToastContainer, toast } from "react-toastify";

import "react-toastify/dist/ReactToastify.css";

export default function Welcome() {
const location = useLocation();

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

CHAPTER 4. INCORPORATING BACKGROUND SYNC 91

function handleCheckWhatsOnServer() {
tasksService.retrieveAll() .then((json) => {
console.log(json);
toast.success("Items retrieved from server and printed
< on console");
s
}

function handleStartFromServer () {
if (window.confirm("I will proceed, ok?") === true) {
tasksLocalService.startFromServer() .then(() => {
toast.success(
"Everything was retrieved from server and created
-~ locally"
);
s
}
}

return (
<Container fluid className="mainBody">
<ToastContainer />
<Card>
<Card.Header as="h5">Welcome !</Card.Header>
<Card.Body>

<p>{location.state}</p>

<p>
Welcome to the Task List Application. This is to
— demonstrate how to
create a Progressive Web App with React.

</p>

<p>
Do you want to check which items are on the
— server?
"
<Button onClick={handleCheckWhatsOnServer}>Click
— here!</Button>

</p>

<p>

47

48

49

50

51

52

53

54

55

CHAPTER 4. INCORPORATING BACKGROUND SYNC 92

Do you want to clear everything and retrieve all
— 1items from server?
"
<Button onClick={handleStartFromServer}>Start
< from Server</Button>
</p>
</Card.Body>
</Card>
</Container>
);
}

With this in place, we can do a full test of the application. Start the back-
end services as explained in 2.1.1 or 2.1.2. Create a production build and
start the application. Then, navigate to http://localhost:8000/. First
sign in and then go to the welcome screen. If you click on the button that
prints on the console the items that are on the server, you will see the four
items that the back-end Task List service has created by default. This is
illustrated on figure 4.11. Finally, if you click on the "Start from Server"
button, you will get those four items created locally and a toast message will
inform the user when finished as illustrated on figure 4.12. Now, you can
start making changes to the task list and then verify what there is on the
back-end to make sure everything is working.

CHAPTER 4. INCORPORATING BACKGROUND SYNC 93

PWA with React Task List @ juser (Log out)

Welcome !

Welcome to the Task List Application. This is to demonstrate how to create a Progressive Web App

with React.

Do you want to check which items are on the server? B&[& i E)
[ﬂ Elements Console Sources Network Performance Memory Application » B1 E o T
¥ & | top¥ | @ | Filter All levels ¥ 1lssue: @1

Welcome,is:15

¥ {tasks: Array(4), result: 'success'} B
result: "success"
vtasks: Array(4)
p B: {status: 'DANGER', done: false, text: 'Remember to do this, that, and also the other', expirationDate:
pl: {status: 'DANGER', done: true, text: 'Buy that very important thing', expirationDate: '2822-06-13 19:6
» 2: {status: 'FINE', done: false, text: 'Sister Birthday. do the preparations', expirationDate: '20822-86-2
» 3: {status: 'FUTURE', done: false, text: 'Record AC/DC interview', expirationDate: '2022-87-82 19:06', cr
length: 4

» [[Prototype]]: Array(@)

Figure 4.11: Check which items are on the server

PWA with React Task List ut)
0 Everything was retrieved from

server and created locally

Welcome!

Welcome to the Task List Application. This is to demonstrate how to create a Progressive Web
App with React.

Do you want to check which items are on the server? B® &=)
Do you want to clear everything and retrieve all items from serverp BRESGlaRiIE S8

Figure 4.12: Start from the Server

CHAPTER 4. INCORPORATING BACKGROUND SYNC 94

4.4 Handling Syncing Errors

What happens if the sync fails? It may occur that the device in which you
are running the Web App does not have good connectivity or a component in
the back-end is not functioning properly or is down. We have mentioned, at
the beginning of this chapter, that if the doSync () returns a rejected promise
the sync process will retry later. In Chrome, the second time will happen
exactly 5 minutes later from the previous one. If the second time fails again,
there is another one (and the last one) that runs 15 minutes later from the
previous time. Note that this third attempt is the last one. This last chance
is informed by a property called lastChance in the event object. Figure
4.13 shows the console log of Chrome with these three attempts. Note the
lastChance property.

Knowing how this works is pretty important. In the case of the Web
App we have built in this book, this is not a big problem. All the changes
that need to be synchronized are persisted in the queue-store, so, if for any
reason the sync is discarded, the next time there is any change done by the
user in the Web App, the sync is rescheduled and everything will be synced
(previous changes and new changes). However, this might not be the case of
all the applications and use cases you might have. By reading the lastCha
nce property we are able to do something else if it is required as we will see
later.

On the other hand, as it was described before, any call to a UserAuth or
TaskList back-end API requires a valid authenticated token. And this is also
the case for the back-end API we consume to replicate the data stored in
IndexedDB. When the sync event is triggered, the Web App consumes the
back-end API with a token. If the token is valid the service will proceed with
the replication, if not, it will return with an unauthorized error, which will
reject the promise and the background sync service will try later. This is an
important point, authentication is still required to be online. The user must
sign in, grab a valid token and after that, it might go offline. What might
be an option here is to extend the life of the token (not good for security
though), so the application will have few chances to suffer during replication.
The UserAuth service can be started with the parameter of fline=true, as
shown below. This will make the token expire in seven days.

$ mvn exec:java
— -Dsecret=bfhAp4qdm92bDOFI0ZLanC66KgCS8cYVxq/K1SVdjhI=
— -Doffline=true

https://github.com/enriquemolinari/userauth

CHAPTER 4. INCORPORATING BACKGROUND SYNC

PWA with React Task List

i= Task List

N © 2022-10-14 00:00

Elements Sources Metwork

top ¥ | @& | Filter

Console

Performance

Memory

Application

95

Security

Lighthous

it was executed...
17:39:19 (—

Uncaught (in promise) undefined

it was executed...
17:44:19 _

Uncaught (in promise) undefined

it was executed...

17:59:19 e

» SyncEvent {isTrusted:

» SyncEvent {isTrusted:

» SyncEvent {isTrusted:

true,

true,

true,

tag:

tag:

tag:

‘sync-queved-data’,

'sync-quewed-data’',

'sync-quensed-data’,

lastChance:

lastChance:

lastChance:

false

false

true,

type: 'synqd'.

"syndg'.,

type:

type: 'sync|, t

ncaugnt {In promise) undeTined

Figure 4.13: Errors, Retries and lastChance

Anyway, whatever the problems are during synchronization it would be
ideal to inform that to the end user. And to do that we have to perform a
communication from the service worker to the Web App. We have explained
in section 3.1 how to perform a communication from the Web App to the
service worker. Now, we are going to show how to do it from the service
worker to the Web App to inform the end user if there is an error during the
syncing process. To implement this, let’s first add the message event listener

to the index. js file.

Listing 4.20: Adding the message Event Listener to the index.js

— =>{
toast.error(

— event.data.msg
)
b
3

if (event.data.type === "SYNC_ERROR") {

"Something went wrong with the sync service:

I|+

navigator.serviceWorker.addEventListener ("message", (event)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

CHAPTER 4. INCORPORATING BACKGROUND SYNC 96

In listing 4.20 above we are listening to the message event coming from
the service worker. As parameter, it receives an event object in which we
can pass data from the calling/triggering client. If the event.data.type is
SYNC_ERROR then we will show the error to the end user.

Now, on the service-worker. js we have to change the doSync () function
to incorporate the postMessage call if there are errors.

Listing 4.21: Communicate errors to the Web App

async function doSync(event) {
console.log("it was executed...", event);
if (event.tag === "sync-queued-data") {
let all = await tasksLocalService.getAllQueued();
return syncServer
.bulkTasks(all)
.then(() => {
return tasksLocalService.deleteAllQueued();
19)
.catch((e) => {
self.clients.matchAl1() .then(function (clients) {
if (clients && clients.length) {
clients.forEach((client) => {
client.postMessage ({
type: "SYNC_ERROR",
msg: e.msg,
s
b;
}
D;
return Promise.reject();
s
}
}

Note that on listing 4.21 above starting at line 10, we have added the
catch block. On line 11, the sentence self.clients.matchAll() will obtain all
the clients (browser window tabs) controlled by the service worker. To each
of them, we will post the SYNC_ERROR message with the actual error coming
from the back-end API in the msg property. And finally, the return Prom
ise.reject() is important to inform the browser that the syncing must be
tried again later. With these changes, the user will be informed about any

https://developer.mozilla.org/en-US/docs/Web/API/Clients/matchAll

10

11

12

CHAPTER 4. INCORPORATING BACKGROUND SYNC 97

error that might occur at sync time. Figure 4.14 illustrates how the message
is presented to the user. In this case, the user is not authenticated at the
time the sync service ran.

PWA with React Task List
Something went wrong with the

@ sync service: You are not

= : authenticated
i= Task List
I B (0 2022-10-14 00:00 W
= ol Elements Sources Network Console Performance Memory — Application 3 o1 B1 o
¥ ® topy | @ | Filter Alllevels v || 1lssue: B 1
it was executed... service-worker.js? [sml:118
SyncEvent {isTrusted: true, tag: 'sync-queued-data', lastChance: false, type: 'sync', target: ServiceWorkerGlobal
Scope, o}
€@ Uncaught (in promise) undefined service-worker.js:1

>

Figure 4.14: Sync Error Shown to the User

Finally, if you want to do something in case the lastChance is true, we
can pass that value to the Web App and re-register the sync event. We can
do this by adding the highlighted changes shown on listing 4.22 below.

Listing 4.22: re-register the sync event when lastChance

navigator.serviceWorker.addEventListener ("message", (event)

o = {
if (event.data.type === "SYNC_ERROR") {
toast.error(
"Something went wrong with the sync service: " +
— event.data.msg
)

if (event.data.lastChance) {
navigator.serviceWorker.ready.then((reg) => {
reg.sync.register("sync-queued-data");
)
}

s

-

x
e

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

CHAPTER 4. INCORPORATING BACKGROUND SYNC 98

And in the service worker doSync () function we have to pass the last
Chance property value, as shown below:

Listing 4.23: Passing lastChance to the Web App

async function doSync(event) {
console.log("it was executed...", event);
if (event.tag === "sync-queued-data") {
let all = await tasksLocalService.getAllQueued();
return syncServer
.bulkTasks(all)
.then(() => {
return tasksLocalService.deleteAllQueued();
19)
.catch((e) => {
self.clients.matchAl1() .then(function (clients) {
if (clients && clients.length) {
clients.forEach((client) => {
client.postMessage ({
type: "SYNC_ERROR",
msg: e.msg,
lastChance: event.lastChance,
s
b
}
B
return Promise.reject();
s
}
}

With this, we have finished adding the background sync service to Task
List. The full source code of this version of the application can be found at
react-pwa-tasklist-v2.

https://github.com/enriquemolinari/react-pwa-tasklist-v2

	About the Author
	What is this book about?
	Development Environment
	Introduction
	Progressive?
	And... Progressive Web Apps?
	Capabilities of Progressive Web Apps

	Crafting your First PWA
	Configure the Development Environment
	Using a Reverse Proxy
	Using LocalTunnel

	Task List React Application
	The Service Worker
	Making the Web App Installable
	Supporting Offline

	Handling New Releases
	The Update Process
	Manual Update

	Incorporating Background Sync
	The Background Sync Capability
	Using IndexedDB
	Adding IndexedDB and Background Sync to Task List
	Handling Syncing Errors

