

Programming iOS 14

Using Swift UI

Get Started With Building iOS 14 With Swift 5 and Xcode

Gary Elmer

Copyright

Copyright©2020 Gary Elmer

All rights reserved. No part of this book may be reproduced or used in any manner without the prior written permission of the copyright owner, except for the use of brief quotations in a book review.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper.

Printed in the United States of America

© 2020 by Gary Elmer

Table of Contents

Copyright

CHAPTER ONE

WELCOME TO SWIFTUI

THE SWIFT 5.3 PROGRAMMING LANGUAGE

Variables and Constant
 s
 .

How to declare Variables and Constants

How to name Constants and Variables

How to print Constants and Variables

The Swift Tuple

The Swift Optional Type

Error Handling in Swift

Assertions and Preconditions

CHAPTER TWO

Basic Operators in Swift

Assignment Operator

Compound Assignment Operators

Logical Operators

Combining Logical Operators

Explicit Parentheses

Strings and Characters

Special Characters in String Literals

Working with Characters

Unicode

CHAPTER THREE

Classes and Objects in Swift

Initialization and Deinitialization

Properties

Observers

Protocols

Extensions

Access Control

Operator Overloading

Generics

CHAPTER FOUR

Introduction to Swift’s Functions

Defining and Calling Functions

Function Parameters and Return Values

Functions without Parameters

Functions with Multiple Parameters

Function Argument Labels and Names of Paramete
 r
 .

Default Parameter Values

Function Types as Parameter Types

The defer Keyword

CHAPTER FIVE

GETTING READY ON THE ROUTE TO DEVELOPING iOS 14 BASED APPS

The Apple Developer program

Enrolling in the Apple Developer Program

CHAPTER SIX

THE Xcode 12 and the iOS 14 SDK

Installing Xcode 12 and the iOS 14 SDK

Creating a project with Xcode 12

The Xcode 12 Main Window (The Xcode 12 interface)

The Debug area

View threads in the debug area

View variables in the debug area

Managing project file

Organize files in groups

CHAPTER SEVEN

AN INTRODUCTION TO Xcode 12 PLAYGROUND

How to create a playground

Edit a playground

Run a playground

Add auxiliary code to a playground

CHAPTER EIGHT

USING Xcode in SwiftUI Mode

CREATING A SWIFT UI INTERFACE

Run on a connected device

CHAPTER NINE

Connecting codes with the user interface using the Interface Builder workflow

Add user interface objects to the canvas

Connecting objects to codes

Connect from an object to code

CHAPTER TEN

Build and run your app

Creating and distributing a watch-only app

CHAPTER ELEVEN

LOCALIZING YOUR APPS

Adding languages supported by apps in the App Store

CHAPTER TWELVE

GETTING YOUR APPS TO THE STORE

App thinning (For iOS, tvOS and watchOS)

Slicing (for iOS, tvOS)

Bitcode

Distribute an app through the App Store

ABOUT AUTHOR

CHAPTER ONE

WELCOME TO SWIFTUI

Apple announced the Swift programming language at its 2014 Worldwide Developers Conference (WWCD). Before Swift, Apple used the Objective –C programming language to develop apps for all of its devices (iOS, tvOS, watchOS, maOS and the iPadOS). Apple uses SwiftUI, as a substitute to Objective-C, as an innovative means of designing responsive user interfaces across all of their platforms. Although Swift can be used on many platforms, it is especially a handy program of choice for building applications on Apple devices – ranging from devices that run on WatchOS, MacOS, tvOS and the most popular OS that runs iPhone (iOS). Swift UI understands what a device user doesn’t understand. SwiftUI understands what every button on your device is working for and how it can be tapped, and it also entails how device users’ enter texts on their devices.

For developers, developing an app is the act of writing Swift codes to control SwiftUI. Swift is a language that says “I want a text field here, a button over there and an image at this place” while the SwiftUI is the exact part of the whole design that actually knows how draw that text at the exact place, hot to make that button and exactly how show that image at the right place.

In summary, Swift is an exciting programming language that you can use to build apps for Apple Watch, iPhone, iPad, Mac, Apple TV and lots more.

This guide will take you on an expensive tour to building the latest Apple’s iOS 14 applications
 using the SwiftUI, Xcode 12 (which is the latest Xcode) and the Swift 5 Programming language (Swift 5.3).

Before we go in depth into the real deal of designing iOS 14 with Swift, let us take a brief look at the Swift 5.3 programming language as it is an updated Swift language compared to the 4.2 released in 2017.

THE SWIFT 5.3 PROGRAMMING LANGUAGE

The Swift 5.3 Basic

Why Swift?

Swift, Apple’s newest programming language, has been designed for iOS, watchOS, tvOS and macOS app development. Most readers who have used Objective-C programming language before will find Swift language very familiar.

Swift has its own types of all of the basic C and Objective-C types; ranging from Int for integers, Bool for Boolean values, String for textual data and the Double and Float for floating-point values.

Like the C programming language, Swift deploys variables to refer to values and store them. Swift, like most programming languages, makes good use of variables that don’t change values. Constants
 are variables with unchanging values. Swift’s constants are actually more useful and powerful than the constant in C language. Swift utilizes constants all through to make codes used in the development of apps clearer and safer in usage and intent.

Along with some familiar types common to both Swift and many popular languages in programming, Swift now introduces advanced types called tuples
 which was not obtainable in Objective C programming language (Apple uses the objective C language before Swift in 2014). With Tuples, you will be able to build and use values that have been grouped. A tuple, normally, can be utilized to return many values from any function as one compound value.

Swift also brings, with its many features, an optional type that help to handle the lack of a value. The optionals imply either “there is presence of a value which is equal to X” or “no value exists”. The optionals in the Swift language are much like the nil

 with pointers for the Objective-C programming, only that the optional is applicable for any type, and not only for classes. Unlike the nil

 pointers in the Objective-C, the Swift’s optionals are much safer and expressive and they are at the interface of many of Swift’s most useful features.

Swift can be regarded as a type-safe
 programming language; this implies that the language gives you a clear shot of the categories of values that can actually work with your code. Let us say some areas in your code need a String
 data type, safety will not allow you to mistakenly give it an Int

 data type. In the same vein, the type safety capability in Swift prevents users from mistakenly giving an optional String

 data type to a particular piece of code needing a non-optional String
 .
 With the type safety in Swift, it becomes especially very easy to see and fix errors in codes during the development phase once they are spotted.

Variables and Constants
 .

These can be regarded as the beauty of Swift. In your app development, you can assign a particular name like welcomeMessage or highestNumberOfLoginAttempts
 ,
 and put a value or you can put a prompt with a value of your choosing (like the "Hello"
 string or the value 10
).
 This actually implies that the number 10 is the maximum attempts that can be made by a user. This will serve as a security measure to prevent unauthorized access to that app. Also, the welcome message when the app is launched will be “Hello.” Once you set a value for your constant, you will not be able to change it anytime later. On the contrary, you can always set another value for your variable at any point in time.

How to declare Variables and Constants

Variables and constants cannot be used without necessarily declaring them in your codes. Constants are declared by the let

 keyword while the var

 keyword is used essentially to declare your variables. The below is a typical example of how your Variables and Constants can be deployed to monitor the exact value of attempted login by a particular user;

[image:]

The above code actually means;

“
 Declare a constant named
 maximumNumberOfLoginAttempts
 ,
 and assign it a number 10
 .
 Then, state a variable tagged currentLoginAttempt
 ,
 and assign it 0 as the initial value.”

In the above example, the amount of login attempts allowable has been stated as the constant, since the maximum value does not change. The current login attempt counter has been stated as a variable, since the value will actually be increased after each login attempt that fails.

Commas can be utilized to declare multiple variables or constants on a single line. You only have to list the variables and then separate them with a comma.

[image:]

Note: always use the let keyword to declare store values that won’t change in the code and the values that can change should be mentioned as a variable.

Type Annotations

You can assign a type annotation
 once you have declared your variables or constants, if you wish to have a clear understanding of the categories of values that can be stored by the variable or constant. Enter a type annotation by putting a colon right after the name of the variable or constant, insert a space and then put the name of the type that you wish to use. Look at the below example for the type annotation for the variable named welcomeMessage
 ,
 which clearly indicate that only String

 values can be stored by the variable:

	

var
 welcomeMessage
 : String

The colon meaning of the colon in the declaration above is “…of type…,” and the above code can be read as:

“
 Let a variable called
 welcomeMessage
 of the
 String
 type be declared.”

The “of type String
 ”
 phrase actually denotes “can store any String
 value.”

You can then proceed to set the variable welcomeMessage to any string value without any error:

[image:]

Multiple related values having the same type can be declared on one line that is separated by commas, and then input a single type annotation just right after the variable’s name;

var
 red
 ,
 green
 ,
 blue
 :
 Double

It is actually rare in practice that you will be required to write type annotations. When you input any initial value for a particular variable or constant at the point where it has been defined, Swift will try to infer the data type that can be deployed for that particular variable or constant. If you look at the welcomeMessage above, you will see that no initial value has been given, hence the welcomeMessage variable’s type has been specified with a type annotation instead of being inferred.

How to name Constants and Variables

Variables and Constants names are not choosy when it comes to characters designation as they can actually contain any character type (with some few exceptions), even the Unicode characters:

	

let
 π
 = 3.14159

Whitespace characters, private-use Unicode scalar values, arrows, mathematical symbols or the line- and box-drawing characters should not be utilized as characters. Characters cannot, as well, start with a number, but the number can be included somewhere else within the name.

Once a variable or constant of a certain type has been declared, you will not be able to declare such variable or constant again with the same name; neither can you even change it to a store value of another type. Also, you will not be able to convert a variable into a constant and vice versa.

If you plan to assign a variable or a constant the exact same name as a reserved Swift keyword, you will need to add a backticks (`) to the keyword. But it is actually advisable that you don’t use keywords as names unless there is a need to use them.

Also, you will be able to change an existing variable’s value to another value that is compatible. In the case below; the value of ``friendlyWelcome” has been changed from "Hello!" to "Greetings!":

[image:]

Once the actual value of a constant has been set, you will not be able to change its value unlike that of a variable. If you make an attempt to modify the value of a particular constant in your code, you will get an error prompt when the code is compiled.

[image:]

How to print Constants and Variables

You can print the current value of a particular variable or constant can be printed by using print(_:separator:terminator:).

	

print
 (friendlyWelcome
)

	

// Prints "Greetings!"

The
 print(_:separator:terminator:)

 function is described as a global function that is able to print one or more values to a particular output. While working with Xcode (the Integrated Development Environment for developing apps for Apple devices), for instance, the print(_:separator:terminator:)

 function will print output in the Xcode’s “console” pane. The
 terminator

 and separator
 parameters actually have default values, hence omitting them when you call the function is acceptable. By default, the function will add a line break to terminate the line it prints. If you plan to print a certain value without necessarily having the line break after it, simply use an empty string as terminator—for instance,
 print(someValue, terminator: "")
 .

Swift deploys string interpolation
 to add the name of a particular variable or constant as a placeholder in a longer string, and to ask Swift to substitute it with the current value of that variable or constant. Use parentheses to wrap the name and then escape the name with a backslash just before the opening parenthesis:

[image:]

Comments

Comments are used in a line of codes to include texts that are not executable; probably as a reminder or a note to ask the users to carry out some actions. The Swift compiler will disregard comments during code compilation.

The Swift’s comments and the Comments in the C programming language are very similar. Two forward slashes are used to initiate single line comments.

	

// This is a comment.

Use the forward slash together with an asterisk (/*) to begin a multiline comment and then end it with an asterisk and a forward-slash (*/):

[image:]

Unlike the multiline comments in the C programming language, you can actually nest a multiline comment in Swift inside another multiline comment. To write a nested comment, start a multiline block and then begin a second multiline comment within the first block. You can then close the second block and then follow it by the first block;

 [image:]

The Nested multiline comments allow users to comment out large areas of code fast and stress free, even if the code has the multiline comments already.

Semicolons

The Swift language, unlike most other languages, doesn’t need users to input a semicolon (;) right after each statement in their code, although anybody can put a semicolon in Swift code if they wish. However, you will need to put semicolons if you plan to write multiple separate statements right on one line:

	

let
 dog
 = "
 �
 �
 "
 ; print
 (dog
)

	

// Prints
 "
 �
 �
 "

Integers

From basic mathematics, integers
 are whole numbers that have no fractional part, such as 57
 and -45. Integers can either be signed (+ve, 0,
 or –ve)
 or unsigned (+ve
 or 0).

With Swift, the signed and unsigned integers in 8 bits, 16 bits, 32 bits, and 64 bit forms are accounted for. Just like the way integers are named in the C language, Swift also follows the same pattern in that an 8-bit unsigned integer will have the UInt8
 type while a 32-bit signed integer will have the Int32
 type.

Integer Bounds

The min
 and max
 properties of integers can be used to check the minimum and maximum values of each integer type;

[image:]

Each property has the appropriate-sized number type (like the UInt8
 in the above example) and can be deployed in expressions together with other values of equal type.

Int

In some cases, you don’t necessarily have to select a specific integer size to be used in your code as Swift actually provides an extra integer type called Int
 with the same size as the native word size of the current platform;

●

 If you have a 32-bit platform, the Int
 will be of equal size as Int32
 .

●

 If you have a 64-bit platform, the Int
 will be of equal size as Int64
 .

You should always deploy Int
 for values of integers in your Swift code unless you are required to work with a particular integer size. This enables interoperability and consistency in your codes. On a 32-bit platform, Int
 can actually store values between -2,147,483,648 and 2,147,483,647, which are actually sufficient for many types of integers.

UInt

Swift also gives an extra integer type called UInt
 with the same size as the native word size of the current platform:

●

 If you have a 32-bit platform, UInt
 will be of equal size as UInt32
 .

●

 If you have a 64-bit platform, UInt
 will be of equal size as U
 Int64.

Using Int
 consistently in your code for integer value is better as it allows code interoperability and saves you the stress of converting from one number type to another. Hence, you should only use UInt
 if you actually require an unsigned type of integers that have the same size as that of the native word size of your platform.

Floating-Point Numbers

Floating-point numbers
 are values that have a fractional part, like 7.4998, 0.5, and -273.15.

The Floating-point types can have a much wider value than the integer type and can be deployed to store larger or smaller values that can be stored in an Int.
 In Swift, there are two forms of the floating-point number types;

●

 Double stands for a 64-bit floating-point number.

●

 Float stands for a 32-bit floating-point number.

Double
 has a precision of say 15 digits while the Float
 has about 6 decimals in precision. The nature and the range of values you are expected to use within your code will actually determine the floating-point type you can utilize. In a case where any of the two types of floating-point is suitable, kindly use the Double
 floating-point type.

Type Safety and Type Inference

The swift language is a typical type-safe
 language. A type safe language allows clarity with the type of values that can actually work with your Swift codes. If any part of your line needs a String,
 you cannot mistakenly substitute an Int.

The type-safe in Swift carries out type checks during code compilation and will prompt any wrong types as an error. This enables quick matching and fixing of errors during the compilation stage of your app development.

Type-checking also helps in avoiding errors while working with different kinds of values. This doesn’t mean that you will need to specify the kind of every variable and constant that you are using as Swift is capable of using the type inference to know the appropriate type you are working with. Type inference allows a compiler to automatically know the type of a certain expression during codes compilation just by checking the values you enter.

Due to the advantages provided by the type inference, the Swift language actually needs far lesser type declarations than most other programming languages like the C or Objective-C. Although, you will still have to enter the variables and constants but a large chunk of specifying the type you are working with will be done for you automatically by Swift.

Type inference is especially advantageous when you deploy an initial value to declare a variable or a constant. This is mostly carried out by assigning to the constant or variable a literal value
 (or literal
) at the point where you are declaring your constant or variables. You can view a literal value as a value that shows in your source code, like 60 and 3.14159 in the below examples.

For instance, if you provide a literal value of 60 to a particular constant without indicating the type, the Swift will automatically pass an Int
 for the constant since you have begin it with a number that resembles an integer;

[image:]

Also, if no type has been indicated for a floating-point literal, Swift will automatically assumes that you mean to pass a Double;

[image:]

Swift will always use Double (and not Float) when assuming the type of floating-point numbers.

If you have combined floating-point literals and integers in an expression, Swift will tend to assume a type of Double from the statement;

[image:]

The literal value of 3 does not really have an explicit type in and of itself; hence an output type Double
 has been inferred owing to the floating-point literal in the addition.

The Swift Tuple

The Swift tuple is probably one of the simplest, yet most useful features defined in the Swift programming language. With a tuple, you can always - albeit temporarily - group multiple values together into one entity. The item you store in a tuple can be of any type since there are no binding rules that say the items must be of the same type. You can construct a tuple to have a Float value, an Int value and a string as you can see below;

let myTuple = (12, 452.433, "This is a String") Swift Data Types, Constants and Variables.

You can access a tuple quickly by referencing the index place (the first value being at index 0). For instance, the code below extract the string resource (found at index position 2) and then assign it to a another string variable;

let myTuple = (12, 452.433, "This is a String")

let myString = myTuple.2

print(myString)

Alternatively, you can extract all the values in a particular and then assign them to constants or variables in a single statement;

let (myFloat, myInt, myString) = myTuple

This same method can be deployed to extract some selected values from a tuple and then ignore others by substituting them with an underscore character. When you take a look at the code fragment below, you will see that the code extracts the string and integer values from the tuple and then assign them to variables but the floating-point value has been ignored;

var (myInt, _, myString) = myTuple

You can assign a name to each value when you are creating a tuple like the one below;

let myTuple = (count: 10, length: 432.433, message: "This is a String")

The values in the codes can then be referenced by the names given to the values stored in the tuple. For example, let us say that you want to get the result of the message
 string value from the myTuple, you can deploy the line of code below;

print(myTuple.message)

Tuple has an intrinsic ability to output multiple values from a function.

For example, a (404, "Not Found") tuple describes the status code of an HTTP status.
 An HTTP status code is actually a special value prompted by a web server (as an error) anytime you request a web page from the internet. The error code is to tell you that the webpage does not exist.

[image:]

The (404, "Not Found") tuple actually group an Int and a String together to assign two different values to the HTTP status code: a number (404) together with a human-readable description. You can describe the (404, "Not Found") tuple as a tuple of type (Int, String)”.

The Swift Optional Type

The Swift optional data type is a new data type that is essentially lacking in most other programming languages like the Objective-C programming language. The reason for the optional type is to afford a consistent and safe approach to take care of instances where a constant or a variable may not have any assigned value.

You will be able to declare any variable as an optional variable by putting a question mark character (?)
 right after the type declaration. The code below declares an Int variable (which is optional) named index;

[image:]

The variable named index,
 now, can have an integer value given to it or nothing at all. The compiler and the runtime will see “nothing” as nil (the nil value will be assigned by the compiler).

You can use an “if statement”
 to test whether an optional has an assigned value (Swift Data Types, Constants and Variables) or not.

[image:]

If there is a value assigned to an optional, the value will be said to be “wrapped” within that optional. You can use a method called forced unwrapping to access any value that has been wrapped in an optional. This means that the value will be extracted from the optional data type by putting an exclamation mark (!) in front of the optional name. Check the code below to understand this more;

var index: Int?

index = 3

var treeArray = ["Oak", "Pine", "Yew", "Birch"]

if index != nil {

print(treeArray[index!])

} else { print("index does not contain a value")

}

The code above simply deploys an optional variable to capture the index into an array of strings representing the identity of the tree. If the index optional variable possesses any assigned value, the name of the tree at that location inside the array will be printed to the console. Since the index is actually an optional type, its actual value has been unwrapped by putting an exclamation mark right after the name of the variable;

print(treeArray[index!])

Had it been that index has not been unwrapped (if the exclamation mark was omitted from the line above line), an error would have been prompted by the compiler as indicated below;

Value of optional type 'Int?' must be unwrapped to a value of type 'Int'

As an alternative to the forced unwrapping method, you can actually allocate the value you assigned to an optional to a temporary constant or variable using optional binding
 of the below syntax;

if let constantname = optionalName {

}

if var variablename = optionalName {

Error Handling in Swift

During code execution, your program may encounter some errors; these errors are usually handled by using error handling.

While Optionals
 can use the absence or presence of a value to tell the failure or success of a function, error handling, by contrast, enables you to know the root cause of failure, and even allow you to propagate the error to another part of the program.

A function will throw
 an error upon seeing an error condition. The function’s catch
 will be the one to catch the error and then give an appropriate response.

[image:]

A function can always indicate that it will be able to throw an error by inserting the throws

 keyword in the code declaration. While calling a function that can throw an error, you will have to prepend the keyword “
 try”
 in the expression.

Swift will automatically propagate an error out of its current scope until the error is handled by a
 catch

 clause.

[image:]

A
 do

 statement will create a new scope, which will normally allow you to propagate errors to many other clauses.

The codes below show you how to use error handling to actively respond to different errors;

	

func
 makeASandwich
 () throws
 {

	

// ...

	
}

	

do
 {

	

try
 makeASandwich
 ()

	

eatASandwich
 ()

	
} catch
 SandwichError
 .outOfCleanDishes
 {

	

washDishes
 ()

	
} catch
 SandwichError
 .missingIngredients
 (let
 ingredients
) {

	

buyGroceries
 (ingredients
)

	
}

In the above case, the
 makeASandwich()
 function will throw an error once there are no clean dishes or if any particular ingredient is missing. Since the
 makeASandwich()
 can actually throw an error, the function call is wrapped in a try expression. When you wrap the call function in a do statement, any thrown errors are propagated to the catch clauses provided.

The
 eatASandwich()
 function is called if no error is thrown. But if an error is thrown and it tallies with the
 SandwichError.outOfCleanDishes
 instance, then the function
 washDishes()
 will be called. In another way, if an error is thrown and it tallies with the
 SandwichError.missingIngredients
 instance, then the function
 buyGroceries(_:)
 will be called with the associated [String] value captured by the catch pattern.

Assertions and Preconditions

Assertions
 and
 preconditions
 are routine checks that occur at runtime. They are primarily used to ensure that an important condition is met before any code is executed further. The code execution will normally continue if the Boolean condition in your assertion or precondition evaluates to
 true.
 But if the Boolean condition evaluates to false, the program’s current state is not valid; code execution will end and the app will stop.

Assertions and preconditions are also used to express any assumptions made and expectations you have during coding to enable you integrate them as part of your code. Assertions will also help you to find mistakes and any incorrect assumptions during app development, and the preconditions will allow you to detect issues in production.

Assertions and preconditions not only allow you to confirm your expectations at runtime, but they equally form a useful means of documentation within your code. You cannot use assertions and preconditions for recoverable errors or expected errors unlike the error handling. This is due to a fact that a failed assertion or precondition is indicative of an empty program state and it is not possible to catch an assertion that has already failed.

It is also worth noting that using assertions and preconditions is not a replacement for designing code in a way that some invalid conditions will not arise. However, it is very likely that your app keeps terminating more often (once an invalid state occurs) when you use assertions and preconditions to enforce valid state and data. It is always advisable to stop the execution as soon as you detect an invalid state. This helps to reduce the damage initiated by that particular invalid state.

One big difference between assertions and preconditions is at what point they are checked respectively: you check assertion in debug builds while preconditions are checked in both the debug and production builds. In the production builds, the condition in the assertion won’t be evaluated. This literally means that you will be able to deploy as many as possible assertions during the app development process and it won’t affect production performance.

Debugging with Assertions

You call the
 assert(_:_:file:line:)
 function from the Swift standard library when you want to write an assertion. You pass an expression that evaluates to
 true
 or
 false

 to the function and a special message to be prompted once the result of the condition is
 false
 .
 For instance:

[image:]

In the instance above, the code execution will only continue if
 age >= 0

 amounts to
 true
 ,
 meaning if the value of
 age

 is nonnegative.
 If the real value of
 age

 is actually negative, like the example above, then
 age >= 0

 will be
 false
 , the assertion will fail and the app will be terminated.

If the condition has already been checked by the code, the
 assertionFailure(_:file:line:)

 function will be used to tell that an assertion has failed. For instance:

[image:]

Enforcing Preconditions

Deploy a precondition anytime a condition has the chance to be false, but must
 surely
 be true if you want the code execution to continue. For instance, a precondition can be used to check whether a subscript is not out of bounds, or to check whether a valid value has been passed to the function.

A precondition can be written by calling the
 precondition(_:_:file:line:)

 function. You pass an expression that evaluates to true or
 false to the function and a special message to prompt once the result of the condition is false. For instance:

[image:]

The
 preconditionFailure(_:file:line:)

 function can also be called to show that a failure has occurred.

CHAPTER TWO

Basic Operators in Swift

An
 operator
 , in programming language, can be viewed as a special symbol that can be deployed to monitor, combine or change values. For instance, the
 addition operator
 (
 +)
 can be deployed to combine (add) two different or similar numbers together e.g
 let i = 4 + 7,
 while the
 logical AND operator
 (&&) can be used to combine two Boolean values, e.g
 if enteredPasswordtwice && locktheDevice
 .

Some of the common operators from familiar programming languages like Objective-C are also recognized by Swift programming language, though Swift offers improved capabilities to reduce or completely eliminate common errors in coding. To prevent the assignment operator (
 =
) from being used mistakenly when the user means to use the (
 ==
) operator, the assignment operator (
 =
) is not programmed to return any value. In order to prevent unintended results while working with digits that become smaller or larger than the value ranges allowable by the type that stores them, the arithmetic operators (
 +
 ,
 -
 ,
 *
 ,
 /
 ,
 %
 and so forth) usually detect and disable value overflow. You can access the value overflow behavior if you want by deploying the Swift’s overflow operator.

Swift has range operators which are not obtainable in the C programming language, such as
 a..<b
 and
 a...b
 , and are often used as shortcut for specifying a range of values.

Terminology

We can have a unary, binary, or ternary operator:

●

 Unary
 operators work on a single target (like
 -a
). Unary
 prefix
 operators are displayed right before their target (like
 !b
), while the unary
 postfix
 operators always appear right after a target (like
 c!
).

●

 Binary
 operators work on two targets (like
 9 + 3
) and they are actually
 infix
 since they usually appear in between their two targets.

●

 Ternary
 operators work on three targets. Like the C language, the Swift language has just one ternary operator which is the ternary conditional operator (
 a ? b : c
).

The values that operators work on are called
 operands
 . In the expression
 9 + 3
 , the
 +
 symbol (at the middle) is the binary operator and the two operands the + symbol is working on are the numbers
 9
 and
 3
 .

Assignment Operator

When you want to update a value with another, you use the
 assignment operator.
 For instance, the assignment operator (
 a = b
) will update the value of
 a
 with the actual value of
 b
 :

[image:]

If the right part of the assignment contains a tuple with multiple values, the components can be broken into multiple variables or constants at once:

[image:]

The assignment operator in Swift, unlike the one in C, does not return a value on its own. For instance, the statement below is not valid;

[image:]

This feature will ordinarily prevent the assignment operator (
 =
) from being utilized mistakenly when the user actually intends to use the equal to operator (
 ==
). Swift avoid mistakes like this by invalidate the “
 if x = y.”

Arithmetic Operators

The Swift language supports all the four standard
 arithmetic operators
 for all available number types:

●

 Addition (
 +
)

●

 Subtraction (
 -
)

●

 Multiplication (
 *
)

●

 Division (
 /
)

[image:]

The Swift arithmetic operator’s values cannot overflow by default unlike the C and Objective-C arithmetic operator. You can have access to the value overflow behavior by using Swift’s overflow operator (such as
 a &+ b
).

The
 String
 concatenation also supports the addition operator;

[image:]

Remainder Operator

For
 remainder operator
 (
 c % z
), you can calculate how many multiples of
 z
 will fit inside
 c
 and the value remaining will be returned. This value is called the remainder. In some other programming languages, the remainder operator is called modulo operator.

To carry out
 9 % 4
 , you need to find how many 4s you can find in 9. It is visible that you can fit two 4s inside 9 and you will have 1 as the remainder. This will be written in Swift language as;

	

9
 % 4
 // equals 1

To know the answer for
 c % z
 , the equation below will be calculated by the
 %
 operator and prompt the
 remainder
 as its output:

c
 = (
 z
 x
 some multiplier
) +
 remainder

The “
 some multiplier”
 component is actually the largest value of multiples of
 z
 that will fit inside
 c
 .

Putting
 9
 and
 4
 inside the equation above will yield:

9
 = (
 4
 x
 2
) +
 1

The same approach is used when finding the remainder for a particular negative value of
 a
 :

	

-9
 % 4
 // equals -1

Putting
 -9
 and
 4
 into the above equation will give:

-9
 = (
 4
 x
 -2
) +
 -1

And you will have a remainder of
 -1
 .

The sign of
 z
 is ignored for negative numbers of
 z
 . This implies that
 c % z
 and
 c % -z
 always bring the same output.

Unary Minus Operator

You can deploy the prefix -, called the
 unary minus operator,
 to toggle the sign of a particular numeric value. See below;

	

let
 four
 = 4

	

let
 minusFour
 = -four
 // minusFour equals -4

	

let
 plusFour
 = -minusFour
 // plusFour equals 4, or "minus minus four"

The unary minus operator (
 -
) is usually prepended right before the number it usually operates on, without inserting any white space.

Unary Plus Operator

The
 unary plus operator
 (
 +
) will return the number or value it works on, without any change:

	

let
 minusFive
 = -5

	

let
 alsoMinusFive
 = +minusFive
 // alsoMinusFive equals -5

Although it can appear like the unary plus operator is not really doing anything; and of course it is not, in the actual sense, but you can deploy the Unary Plus operator to give symmetry in your Swift code for positive values while you use the unary minus operator for negative values.

Compound Assignment Operators

Like the C programming language, the Swift language features
 compound assignment operators
 which combine assignment operators (
 =
) with another operation. One case is the
 addition assignment operator
 (
 +=
):

[image:]

The expression
 a += 2
 is the shorthand for
 a = a + 2
 . By doing this, the addition and the assignment have been combined into a single operator that carries out both of the tasks at the same time.

Comparison Operators

The following comparison operators are supported with Swift;

●

 Equal to (
 x == y
)

●

 Not equal to (
 x != y
)

●

 Greater than (
 x > y
)

●

 Less than (
 x < y
)

●

 Greater than or equal to (
 a >= y
)

●

 Less than or equal to (
 x <= y
)

A
 Bool
 value is always returned by each of the comparison operator to tell whether the statement is true or not;

[image:]

Comparison operators found application in conditional statements like the
 if
 statement:

[image:]

Two Tuples can be compared with each other if they actually have the same number of values and are of the same type. You compare tuples from left to right, going from one value at a time, until the comparison is able to find two unequal values. The two unequal values will be compared and the result will actually determine the end result of the tuple comparison. If all of the elements/values are the same, then the tuples are equal. For instance;

[image:]

In the above example, you can observe the left-to-right comparison that happened on the first line. Since
 1
 is actually less than
 2
 ,
 (1, "zebra")
 is taken to be less than
 (2, "apple")
 , and it doesn’t matter what other values reside in the tuple. It doesn’t even matter if
 "zebra"
 is not less than
 "apple"
 , since the comparison has already been determined by the first element of the tuples. But in a case when you have the first element of the tuples to be the same, their second elements will be compared – you can see what happened in the third line.

You will only be able to compare tuples with a specific operator only if you can apply the operator to each value in the tuples. For instance, as you can see in the code shown below, you will be able to compare two tuples of
 (String, Int)
 type since you can compare both
 String
 and
 Int
 values with the
 <
 operator. In another case, you cannot compare two tuples of
 (String, Bool)
 type with the “less than
 <”
 operator since you cannot apply the
 <
 operator to
 Bool
 values.

[image:]

Note: You will only be able to compare tuples with fewer elements (up to six) as this is the limit obtainable in the Swift standard library. If you want to compare tuples that contain about seven or more elements, you will need to implement the comparison operator by yourself.

Ternary Conditional Operator

Special operator that has three parts is called the
 ternary conditional operator
 and it will usually take the form
 question ? answer1 : answer2
 . The ternary conditional operator provides a shortcut that can be used to evaluate one of two statements based on whether the question is false or true. If the
 question
 is true, the
 answer1
 will be evaluated and its value will be returned. If the
 question
 is false, the
 answer2
 will be evaluated and its value will be returned.

The ternary conditional operator provides shorthand for the below code;

[image:]

The case below is one that calculates height for a particular row of table. The row height is 50 points taller than the content height provided that the row possess a header, and will be 20 points taller than the content height if the row lacks a header;

[image:]

The above example is the shorthand for the code below:

[image:]

In the first example, the way the ternary conditional operator was used means that the
 rowHeight
 can actually be set to the correct value on a single line of code, which is rather more concise than the one deployed in the second example.

It becomes very easy to decide which one out of the two expressions will be appropriate. The ternary conditional operator should be used with care, however. It should not be overused as its conciseness can create hard-to-read code. Also, do not combine multiple cases of the ternary conditional operator into a single compound statement.

Logical Operators

The Boolean logic values
 true
 and
 false
 can be combined or modified by
 Logical operators
 . Just like the C language, the three essential logical operators are also supported by Swift programming language. The standard operators include;

●

 Logical NOT (
 !a
)

●

 Logical AND (
 a && b
)

●

 Logical OR (
 a || b
)

Logical NOT Operator

The
 logical NOT operator
 (
 !a
) serves to invert a Boolean value to enable the
 true
 becomes
 false
 , and the
 false
 tending to
 true
 .

The logical NOT operator works like a prefix, and usually displays right before the value it is operating on, without any white space. The logical not operator (
 !a
) can be read as “not
 a
 ”, as you can see in the example below;

[image:]

The statement
 if !allowedEntry
 will be read as “if not allowed entry.” The line that follows will only be executed if “not allowed entry” is true; meaning that if
 allowedEntry
 is
 false
 .

As it was in the example above, you can make your code more readable and concise when you choose your Boolean constant and variable names carefully, while you avoid double confusing logic statements or negatives.

Logical AND Operator

For the
 logical AND operator
 (
 a && b
), a logical expression is created where all of the values must be
 true
 for the overall expression to equally be
 true
 .

If any of the values is
 false
 , the whole expression is automatically
 false
 . As a matter of fact, if the value of the first statement is
 false
 , the value of the second statement won’t even be evaluated, since it can no longer make the whole expression equal to
 true
 . This is called
 short-circuit evaluation
 .

The examples below examine two
 Bool
 values and access is only allowed if both of the values are
 true
 :

[image:]

Logical OR Operator

The
 logical OR operator
 (
 a || b
) is just an infix operator designed from two adjacent pipe characters. The Logical OR operator can be utilized to make logical statements where only one of the two values must evaluate to
 true
 if the whole expression must be
 true
 .

Just like you can observe in the above Logical AND operator, the short-circuit evaluation is used by the Logical OR operator to consider its expressions. If the left part of a Logical OR expression is
 true
 , the right part will not be evaluated, since the outcome of the whole expression cannot be changed.

In the below example, the (
 hasDoorKey
) which is the first
 Bool
 value is
 false
 , but the (
 knowsOverridePassword
) which is the second value is
 true
 . Since one value is
 true
 , the whole expression will evaluate to
 true
 , and access will be allowed:

[image:]

Combining Logical Operators

Longer compound expressions can be created by combining multiple logical operators;

[image:]

The above example deploys multiple && and || operators to make a longer compound expression. However, the && and || operators still work on only two values, so there are three smaller expressions chained together. The above example can thus be read as:

If the correct door code has been entered and it passed the retina scan, or if there is a valid door key, or if the emergency override password is known, then allow access.

From the values of enteredDoorCode, hasDoorKey and passedRetinaScan, the first two subexpressions are false. The whole compound expression, however, still amounts to true since the emergency override password is known.

The Swift logical operator && and || are actually left-associative, this means that compound expressions that have multiple logical operators will evaluate the leftmost subexpression.

Explicit Parentheses

In order to allow a complex statement to be easy to follow and read, it is often useful to insert parentheses when they are not strictly needed. You can make the intention of the door access case described above explicit by putting parentheses in the first part of the compound statement.

[image:]

The parentheses make it obvious that the first two values are taken as part of a separate possible state in the overall logic. The result of the compound statement does not change, but the whole intent of the statement is clear to the reader. Readability over brevity; parentheses provide clear intention of your statement.

Strings and Characters

A string is a chain of characters, like the
 "hello, world"
 or
 "albatross"
 .
 String
 types are used to represent Swift strings. There are various ways of accessing the contents of a
 String.

Working with texts in your code with a fast and Unicode-compliant way is made possible by the Swift’s
 String
 and
 Character
 types. The syntax for creating and manipulating string is readable and lightweight, with a string literal syntax similar to the one in C. String concatenation can be done with the
 +
 operator, and managing string mutability is possible by selecting between a variable and a constant, just like most other values in Swift. Strings can also be used to add variables, constants, expression and literals into longer strings. This process is known as
 string interpolation.
 With this, creating custom value for storage, display and printing becomes easy.

Despite this syntax’s simplicity, Swift’s
 String
 type provides a fast, modern string implementation. Every string is made up of encoding-independent Unicode characters, and gives support for getting those characters in various Unicode representations.

String Literals

Predefined
 String
 values can be included within your code as
 string literals
 . Sequences of characters flanked by double quotation marks (
 "
) are called string literals.

Deploy a string literal as a base value for a variable or constant:

	

let
 someString
 = "Some string literal value"

You can see that Swift infers a type of
 String
 for the
 someString
 constant stipulated in the above example because it is initialized with a string literal value.

Multiline String Literals

A multiline string literal is a string that covers many lines.

[image:]

A multiline string literal has all of the lines between the opening and closing quotation marks. The string starts on the first line just after the opening quotation marks (
 """
) and terminates on the line just before the closing quotation marks, which implies that neither of the strings indicated below begin or stop with a line break:

[image:]

When a source code has a line break in a multiline string literal, the line break will equally appear in the string’s value. If you plan to deploy line breaks to make your source code clear and easy to read, but you do not plan to have the line breaks to be part of the string’s value, just put a backslash (
 \
) at the end of those lines:

[image:]

To have a multiline string literal that starts or terminates with a line feed, put a blank line as your first or last line. For instance:

[image:]

Special Characters in String Literals

The following special characters are often included in string literals;

●

 The escaped special characters
 \0
 (null character),
 \t
 (horizontal tab),
 \\
 (backslash),
 \n
 (line feed),
 \"
 (double quotation mark),
 \r
 (carriage return) and
 \'
 (single quotation mark)

●

 An arbitrary Unicode scalar value, compiled as
 \u{
 n
 }
 , where
 n
 is actually a 1–8 digit hexadecimal number.

The below code shows four cases of these special characters. The
 wiseWords
 constant has two escaped double quotation marks. The
 dollarSign
 ,
 blackHeart
 , and
 sparklingHeart
 constants show the Unicode scalar format:

[image:]

Because multiline string literals deploy three double quotation marks instead of one, you can put a double quotation mark (
 "
) inside a multiline string literal without necessarily escaping it. You will be able to put the text
 """
 in a multiline string by escaping at least one of the quotation marks. For instance:

[image:]

Initializing an Empty String

An empty
 String
 value can be created to be the starting point for creating a longer string by either assigning an empty string literal to a particular variable, or starting a new
 String
 case with initializer syntax:

[image:]

You can know whether a
 String
 value is actually empty by checking the string’s Boolean
 isEmpty
 property:

	

if
 emptyString
 .isEmpty
 {

	

print
 ("Nothing is here to display"
)

	
}

	

// Prints "Nothing is here to display"

String Mutability

You can indicate if a particular
 String
 can be mutated or modified by assigning the string to a variable (where you will be able to modify it), or assigning it to a constant (where modification is not possible):

[image:]

Working with Characters

You can use the
 for
 -
 in
 loop while iterating over a string to get the individual
 Character
 values for the
 String.

	

for
 character
 in
 "Dog
 !
 �
 �
 "
 {

	

print
 (character
)

	
}

	

// D

	

// o

	

// g

	

// !

	

//
 �
 �

Alternatively, a stand-alone
 Character
 variable or constant can be created from one character string literal when you provide a
 Character
 type annotation:

	

let
 exclamationMark
 : Character
 = "!"

String
 values can be built when you pass an array of
 Character
 values as an argument to the string’s initializer:

	

let
 catCharacters
 : [Character
] = ["C"
 , "a"
 , "t"
 , "!"
 , "
 �
 �
 "
]

	

let
 catString
 = String
 (catCharacters
)

	

print
 (catString
)

	

// Prints "Cat!"

Concatenating Strings and Characters

String
 values can be concatenated (added together) by using the addition operator (
 +
) to form a new
 String
 value:

	

let
 string1
 = "hi"

	

let
 string2
 = " John"

	

var
 welcome
 = string1
 + string2

	

// welcome is now "hi John"

You can equally append another
 String
 value to a
 String
 variable that is already existing by using the addition assignment operator (
 +=
):

	

var
 instruction
 = "Watch over"

	

instruction
 += string2

	

// instruction now equals "Watch over John"

String Interpolation

String interpolation
 is a method that can be used to create a new
 String
 value from a mix of variables, constants, expressions and literals by putting their respective values inside a string literal. String interpolation can be deployed in both the single-line and multiline string literals. Each object inserted into the string literal will be wrapped inside a pair of parentheses and then a backlash (
 \
) is inserted before the object:

	

let
 multiplier
 = 4

	

let
 message
 = "
 \(multiplier
) times 2.0 is
 \(Double
 (multiplier
) * 2.0
)"

	

// message is "4 times 2.0 is 8.0"

In the case above, the content of
 multiplier
 is put into a string literal as
 \(multiplier)
 . This placeholder was then substituted with the exact value of
 multiplier
 when the string interpolation is solved to make an actual string.

The value of
 multiplier
 is equally part of a larger statement later in the string. This statement calculates the value of
 Double(multiplier) * 2.0
 and puts the result (
 8.0
) inside the string. In this instance, the statement is written as
 \(Double(multiplier) * 2.0)
 when it is added inside the string literal.

You can use string interpolation inside a string that deploys extended delimiters by matching the number of number signs immediately after the backslash to the number of number signs just at the start and end of the string. For instance:

	

print
 (#"6 times 7 is
 \#(6
 * 7
)."#
)

	

// Prints "6 times 7 is 42."

The expressions inside the parentheses within an interpolated string cannot have an unescaped backslash (
 \
), a line feed or a carriage return; but they can have other string literals.

Unicode

Unicode
 is an approved standard for processing, representing and encoding text in different writing systems. It allows users to process and represent, in a standardized form, about almost any character from any language, and to also read and write those characters to and from an external source like the web page or a text file. The
 String
 and
 Character
 types used in Swift are essentially Unicode-compliant.

Unicode Scalar Values

Looking at what is happening behind the scene; Unicode scalar values are used to build Swift’s native
 String
 type. A Unicode scalar value is actually a special 21-bit number for a modifier or character, such as
 U+1F425
 for
 FRONT-FACING BABY CHICK
 or
 U+0061
 for
 LATIN SMALL LETTER A
 (
 "a"
).

It is not all of the 21-bit Unicode scalar values that are designated to a particular character—some scalars are actually reserved for future use in the UTF-16 encoding. A scalar value that has been assigned to a character will also have a name, just like the
 LATIN SMALL LETTER A
 and
 FRONT-FACING BABY CHICK
 in the above example.

Counting Characters

The
 count
 property of a string can be used to recover a count of the
 Character
 values in the string.

	

let
 unusualMenagerie
 = "Koala, Snail, Penguin, Dromedary"

	

print
 ("unusualMenagerie has
 \(unusualMenagerie
 .count
) characters"
)

	

// Prints "unusualMenagerie has 40 characters"

String’s modification and concatenation may not necessarily affect the character count of a string due to the Swift’s usage of extended grapheme clusters for
 Character
 values.

For instance, if you prompt a new string with a particular four-character word like
 cafe
 , and then insert a
 COMBINING ACUTE ACCENT
 (
 U+0301
) at the end of the string, the string’s result will still have 4 as the character count, but the fourth character will be
 é
 and not
 e
 :

	

var
 word
 = "cafe"

	

print
 ("the number of characters in
 \(word
) is
 \(word
 .count
)"
)

	

// Prints "the number of characters in cafe is 4"

	

word
 += "\u{301}"
 // COMBINING ACUTE ACCENT, U+0301

	

print
 ("the number of characters in
 \(word
) is
 \(word
 .count
)"
)

	

// Prints "the number of characters in café is 4"

Accessing and Modifying a String

A string can be accessed or modified through the string’s properties and methods or even by deploying subscript syntax.

String Indices

Each
 String
 value possesses an associated
 index type
 ,
 String.Index
 , which actually corresponds to the location of each
 Character
 in the string.

As discussed above, different characters can demand different levels of memory to store, so if you want to know which
 Character
 is located at a particular position, you need to iterate over each Unicode scalar from the beginning or from the end of that
 String
 . For this exact reason, you cannot index Swift strings by integer values.

The
 startIndex
 property can be used to access the exact position of the first
 Character
 of a
 String
 . The
 endIndex
 property is the place just after the last character in a particular
 String
 . Hence, the
 endIndex
 property is really not a valid argument to the subscript of a string. The
 startIndex
 and
 endIndex
 will be equal when a
 String
 is empty

You will be able to access the indices just before and just after a specific index by deploying the
 index(before:)
 and
 index(after:)
 methods of
 String
 . If you plan to access an index that is farther away from the specific index, you can deploy the
 index(_:offsetBy:)
 method rather than calling one of these methods many times.

The subscript syntax can be used to access the
 Character
 at a specific
 String
 index.

[image:]

You will receive a runtime error if you try to access an index outside of a specific string’s range or to just access
 Character
 at an index outside of a string’s range.

[image:]

You can also use the
 indices

 property to view all the indices of individual characters in a string.

[image:]

Inserting and Removing

To put a single character into a string at a specific index, you can deploy the
 insert (:at:)

 method, and you can also insert the contents of another string at a specified index by using the
 insert(contentsOf:at:)

 method.

[image:]

You can remove a single character from a string at a specific index by using the
 remove(at:)
 method, and you can also remove a substring at a specific range by using the
 removeSubrange(_:)
 method:

	

welcome
 .remove
 (at
 : welcome
 .index
 (before
 : welcome
 .endIndex
))

	

// welcome now equals "hello there"

	

let
 range
 = welcome
 .index
 (welcome
 .endIndex
 , offsetBy
 : -6
)..<welcome
 .endIndex

	

welcome
 .removeSubrange
 (range
)

	

// welcome is now "hello"

CHAPTER THREE

Classes and Objects in Swift

Just like you see it in languages like C++, Objective-C, Java and few other languages, you will be able to define templates for your objects by using Classes.
 In Swift, Classes take the format

class
 Vehicle {

}

Classes feature both methods and properties. Variables that are core part of a class are called properties
 while functions that are essential part of a class are called methods.

In the example below, the Vehicle class has two properties: Color
 which is an optional

String
 , and maxSpeed
 which is an Int
 . The way Property is declared is just about the same as the way variables are declared in other codes

class
 Vehicle
 {

var
 color
 :
 String
 ?

var
 maxSpeed
 =
 80

}

Methods in a particular class look exactly the same as functions just anywhere else. Code that resides in a method can explore the properties of a class by using the keyword self
 , which talks about the object that is running the code currently:

[image:]

The self
 keyword can be omitted if it is visible that the property is actually part of the current object. In the example above, you can see that description
 deploys the keyword self
 , while travel does not. When a class has been defined, instances of the class (called an object) can be created which you can work with.

For instance, if you want to define an instance of the Vehicle class, you will define a variable and call the initializer of the class. Once you have done that, it becomes very easy to work with the class’s properties and functions;

[image:]

Initialization and Deinitialization

A distinct method called initializer
 is called whenever an object is created in the Swift language. The method that you deployed to set up the object’s initial state is the initializer and it is usually named init.

There are two types of initializers in Swift; designated initializers
 and convenience initializers
 . A

designated initializer helps you set up all the things required to use an object; default settings are often used where necessary. A convenience initializer, as the name implies, allows convenient setting up of the instances by allowing more details in the initialization process. As part of its setup, a convenience initializer needs to call the designated initializer.

In addition to initializers, codes can be run when removing an object using a method called deinitializer
 , named deinit
 . This runs just when the object’s retain count has dropped to zero and it is always called before removing the object from memory. This is the final chance for your object to carry out any necessary cleanup before going away permanently.

[image:]

Nil
 can also be returned by an initializer. This can be found applicable when the initializer is not able to construct an object. For instance, the NSURL class has an initializer that takes a string and converts such string into a URL; if the string is not a valid URL, the initializer will return nil. If you want to create an initializer that will be able to return nil—also known as a failable initializer
 — you need to put a question mark right after the init
 keyword, and nil will be returned if the initializer decides that it cannot successfully construct the object:

[image:]

When a failable initializer is used, an optional will always be returned;

[image:]

Properties

Data in Classes are stored in properties
 . Properties, as discussed before, are constants or variables that are attached to instances of classes. The code snippet below shows how you can access properties that you have added to class;

[image:]

However, as objects become more complex, there can be a problem in the system. If you wanted to use engines to represent vehicles, you would need to add a property to the Vehicle class; however, this would mean that all Vehicle instances would have this property, even if they never need one. To make things better organized, it is actually better to move properties that are specific to a subset of your objects to a new class that inherits
 properties from another.

Inheritance

When you define a class, you can create one that inherits
 from another. When a class inherits from another (called the parent
 class), it incorporates all of its parent’s functions and properties. In Swift, classes are allowed to have only a single parent class. This is the same as Objective-C, but differs from C++, which allows classes to have multiple parents (known as multiple inheritance
). If you plan to create a class that inherits from another class, you will need to put the name of the class (the one you are inheriting from) right after the name of the class you are creating, like the example below:

[image:]

Classes that inherit from other classes can usually override
 functions in their parent class. This depicts that you can create subclasses that will inherit most of their functionality, but can specialize in certain areas. For instance, the Car class features an engineType
 property; this property will only be featured by only Car instances. To override a function, you will need to re-declare the function in your subclass and then add the override keyword to let the compiler know that you are not creating a method accidentally with the same name as the one in the parent class. In an overridden function, it is usually very useful to call back to the parent class’s version of that function. You can do this through the super
 keyword, which lets you get access to the superclass functions:

[image:]

Observers

When you are working with properties, you may normally want to run some code whenever there is a change in property. To support this, Swift will actually let you add observers
 to your properties. Observers are small chunks of code that can run just before or after the value of a property. To create a property observer, simply add braces right after your property and add willSet and didSet blocks. These blocks each get passed a parameter—willSet, which is called before the property’s value changes, is given the value that is about to be set, and didSet is given the old value:

[image:]

Protocols

A protocol
 can be imagined as a list of requirements for a particular class. When you define a

protocol, you are creating a list of properties and methods that can be declared by classes. A protocol seems very much like a class, except that you don’t need to provide any actual code—you just define what kinds of properties and functions exist and how they can be accessed. For instance, if you plan to have a protocol that describes any object that can blink on and off, you could use this:

[image:]

Once a protocol has been created, you can then create classes that conform
 to a protocol. When a class conforms to a protocol, it is effectively promising to the compiler that it implements all of the properties and methods listed in that protocol. It is also allowed to have more than one protocol. To proceed with this example, you can create a particular class called Light that uses the Blinking protocol. Remember, the only job of a protocol is specifying what
 a class can do—the class itself is the one that is actually responsible for determining how
 it does it:

[image:]

[image:]

One advantage of using protocols is that Swift’s type system can be used to refer to any object that conforms to a given protocol. This is good because you have the chance to specify that you only care about whether an object conforms to the protocol—the specific type of the class doesn’t matter since we are using the protocol as a type:

[image:]

Extensions

In Swift, you can extend
 existing types and add further methods and computed properties. This is very useful in two situations:

• You are working with a type written by another person, and you plan to add functionality to it but either you don’t have access to its source code or you just don’t want to mess around with it.

• You are working with a type that you wrote, and you want to improve its readability by dividing up its functionality into different sections.

With Extensions, you can carry out both of these options easily. In Swift, you can extend any
 type—that is, you can extend both classes that you write, as well as built-in types like Int and String. You will be able to create an extension by using the extension keyword and then follow it by the name of the type you want to extend. For instance, to add methods and properties to the built-in Int type, you can do this:

[image:]

Extension can also be used to make a type conform to a protocol. For instance, you can make the Int type conform to the Blinking protocol described earlier:

[image:]

Access Control

There are three categories of access control recognized by Swift and they all determine the kind of information that will be accessible to different part of the application;

-
 Public:
 Any part of the app can access public classes, properties and methods. For instance, all of the classes in the UIKit that you use to build iOS apps are actually public.

-
 Internal:
 Internal entities (data and methods) will only be accessible to the module
 in which they are only defined. A module is just like an application, library, or framework. This is the reason you cannot access the inner workings of UIKit—it is defined as internal to the UIKit framework. Internal access control is actually the default level of access control: meaning that if you fail to specify the access control level, it will be assumed to be internal.

-
 Private:
 Private entities are only accessible to the file in which it is declared. This means that you can actually create classes that hide their inner workings from some other classes that are in the same module, which helps to keep the amount of surface area that those classes expose to each other to a minimum.

The kind of access control that a method or property can have depends on the access level of the class that it is contained in. You cannot make a method more accessible than the class in which it is contained. For instance, you can’t define a private class that has a public method:

[image:]

All methods and properties are essentially internal by default. You can explicitly define a member as internal if you want, but it isn’t necessary:

[image:]

The exception is for classes defined as private—if you don’t declare an access control level for a member, it will be set as private, not internal. It is impossible
 to specify an access level for a member of an entity that is more open than the entity itself.

When you declare a method or property as public, it becomes visible to everyone in your app:

[image:]

If you declare a method or property as private, it is only accessible from within the source file in which it is declared:

[image:]

Operator Overloading

An operator is actually a function that takes one or two values and then returns a value.

Operators can be overloaded just like any other functions. For instance, you can represent

the + function like this:

[image:]

Swift allows users to define new operators and overload existing ones for their new types, which implies that if users have a new type of data, they can operate on that data using both existing operators, as well as new ones which they invent by themselves. For instance, imagine you have an object called Vector2D, which stores two floating point numbers:

[image:]

Generics

Swift is a pure statically typed language. This implies that the Swift compiler will need to definitively comprehend what type of information your code is actually dealing with. This means that you cannot pass a string to code that expects to deal with a date (which is something that can happen in Objective-C!). However, this rigidity robes users of some flexibility. It is actually annoying to have to write a chunk of code that does some work with strings, and another that works with dates. This is where generics
 are actually applicable. Generics enable you to write code that does not really need to know precisely what
 information it is exactly dealing with. An example of this kind of use is in arrays: they don’t actually do any work with the data they store, but instead just store it in an ordered collection. Arrays are, in fact, generics. To make a generic type, you will name your object as usual, and then specify any generic types between angle brackets. T is the traditional term used, but you can put anything you like. For instance, to create a generic Tree object, which has a value and any number of child Tree objects, you would carry out the following;

[image:]

CHAPTER FOUR

Introduction to Swift’s Functions

Functions are defined as self-contained pieces of code that carry out a certain task. You assign a function a particular name that shows what it does, and the name will be used to “call” the function to carry out its assigned task when needed.

Swift’s unified function syntax is actually flexible enough to convey anything from a very simple C-style function (without any names of parameters) to a rather difficult Objective-C-style method (that has arguments and names labels for each parameter).

Every function in the Swift language is associated with a type, which is made up of the function’s return types and parameter types. This type can be used just like any other type in Swift, making it especially very easy to pass one function to another as parameters, and to also return functions from functions. You can also write a function inside another function to be able to capture important functionality within a particular nested function scope.

Defining and Calling Functions

By defining a function, you will be able to optionally define one or more typed, named values taken by the function as input (also known as parameters). It is also possible to optionally define the type of value that will be passed back as the output by the function when it is completed; this is known as return type.

Every function has a function name
 describing the tasks that the function is performing. To use a particular function, you will call the function with the name and pass it arguments (input value) that correspond to the type of the function’s parameter list.

The function in the case below is called greet(person:)
 , since that is the action it is performing – it inputs the name of a person and returns a greeting for the person. To get around this, you will define one input parameter – a string value called person –
 and a return string called that will contain the greetings for the person;

	

func
 greet
 (person
 : String
) -> String
 {

	

let
 greeting
 = "Hello,”
 + person
 + "!"

	

return
 greeting

	
}

All of the information is rolled up into the definition of the function, which is normally started (prefixed) with func
 as the keyword. The return arrow
 -> (a hyphen with a right angle bracket) is used to indicate the return type of the function.

The definition explains what the function is doing, what the function should receive, and what the function will return when it is completed. The definition makes it especially very easy to call the function ambiguously from anywhere in the code;

	

print
 (greet
 (person
 : "Anna"
))

	

// Prints "Hello, Anna!"

	

print
 (greet
 (person
 : "Brian"
))

	

// Prints "Hello, Brian!"

The greet(person
 :) function is called by passing the function a String value right after the person argument label, such as greet(person: "Anna")
 . Since the function actually returns a String value, you can wrap the greet(person:)
 in a call to the print(_:separator:terminator:)
 function to be able to print that string and examine its return value, as displayed above.

The body of the greet(person:)
 function begins by defining a particular new String constant named greeting
 and setting the constant to a simple greeting message. The return
 keyword is then used to pass the greetings out the function. When you check the line that says return greeting, you will see that the function ended its execution and the current value of greetings
 was returned.

The greet(person:)
 function can be called multiple times, and each time with different input values. The above case examines what happens if it is called with an input value of "Anna", and then an input value of "Brian". A tailored greeting was returned by the function in each of the cases.

The return message and the message creation can be combined into a single line to make the body of the function shorter;

	

func
 greetAgain
 (person
 : String
) -> String
 {

	

return
 "Hello again, "
 + person
 + "!"

	
}

	

print
 (greetAgain
 (person
 : "Anna"
))

	

// Prints "Hello again, Anna!"

Function Parameters and Return Values

Return values and Function parameters are very flexible in the Swift programming language. Anything can be defined right from a very simple utility function that has a single unnamed parameter to a complex function with parameter names that are expressive and different parameter options.

Functions without Parameters

You don’t need functions to define input parameters. The case below is a function without any input parameter which always output the same message anytime it is called;

	

func
 sayHelloWorld
 () -> String
 {

	

return
 "hello, world"

	
}

	

print
 (sayHelloWorld
 ())

	

// Prints "hello, world"

The function definition still requires parentheses right after the name of the function, even though it does not take parameters. The name of the function is equally followed by an empty pair of parentheses when it is called.

Functions with Multiple Parameters

Functions with multiple input parameters are written inside the parentheses of the function and then separated by commas.

The name of a particular person is taken by the function and determines whether the person has been greeted (input) and then returns a greeting for the person;

	

func
 greet
 (person
 : String
 , alreadyGreeted
 : Bool
) -> String
 {

	

if
 alreadyGreeted
 {

	

return
 greetAgain
 (person
 : person
)

	
} else
 {

	

return
 greet
 (person
 : person
)

	
}

	
}

	

print
 (greet
 (person
 : "Tim"
 , alreadyGreeted
 : true
))

	

// Prints "Hello again, Tim!"

The greet(person:alreadyGreeted
 :) function can be called by passing it both a String argument value tagged person and also a Bool
 argument value tagged alreadyGreeted
 in parentheses, separated by commas. Note that this function is different from the greet(person:)
 function you saw earlier. Although both of the functions contain names that start with greet
 , the greet(person:alreadyGreeted:)
 function actually takes two arguments while the greet(person:)
 function takes just one.

Function Argument Labels and Names of Parameter
 .

A parameter name and label for an argument are associated with each function’s parameter. You use the argument label when you want to call a function with each argument put in the call function together with its argument label before it. The function’s implementation is done with the name of the parameter. Parameter, by default, uses their parameter name as the argument label.

[image:]

All parameters should be represented with unique names. Although, multiple parameters can have the same argument label, but a unique argument label will affect your code’s readability.

Specifying Argument Labels

An argument label is often expressed before the name of the parameter, separated by a space.

[image:]

The example below is another variant of the
 greet(person:)
 function that takes the name and hometown of a person and then outputs a greeting;

[image:]

When you use an argument label in your function, your function can be called in a sentence-like and expressive manner, while still giving a body of function that is readable and clear in purpose.

Omitting Argument Labels

In case you do not plan to have an argument label for a particular parameter, simply put an underscore (
 _
) in place of an argument label for the particular parameter.

[image:]

If there is an argument label for a parameter, you must label the argument when you call the function.

Default Parameter Values

You will be able to define a
 default value
 for a particular parameter in a function when you assign a value to that parameter after the parameter’s type. If you have defined a default value, the parameter can be omitted when you are calling the function.

[image:]

Parameters that don’t have default values should be placed at the start of a function’s parameter list, just before those parameters with default values. The parameters without default values are often more important to the meaning of the function—it becomes easier to notice that the function is being called when you write them first and it doesn’t matter whether any parameter has been omitted or not.

Variadic Parameters

These are parameters that take 0 or more values of a specific type. The variadic parameter is used to indicate that you can pass a varying number of input values to the parameter when the function is called. The variadic parameters can be written by putting three period characters (
 ...
) just after the type name of the parameter.

The values you passed to a variadic parameter will be made available as an array of the appropriate type within the function’s body. For instance, a variadic parameter with
 numbers
 as a name and
 Double...
 as the type will be made available within the function’s body as a constant array named
 numbers
 of type
 [Double]
 .

The case below finds the
 arithmetic mean
 (otherwise called the
 average
) for a list of numbers of any length:

[image:]

Note that it is possible for a function to have at most one variadic parameter.

In-Out Parameters

By default, function parameters are always constants. You will often get a compile-time error when you try to change a function’s value from within the function’s body. What this means is that it is not possible to change the values for parameters mistakenly as you will always get an error. If you want to modify a parameter’s value with a function, and you want to let the changes persist even after the function call has finished, you just define the parameter as an
 in-out
 parameter instead.

An in-out parameter can be written when you place the
 inout
 keyword just before a parameter’s type. An in-out parameter usually has a value that is passed
 in
 to the function, the value is modified by the function, and it is then passed back
 out
 of the function to substitute the original value.

Only a variable can be passed as the argument for an in-out parameter. A literal value or a constant value cannot be passed as the argument since it will be difficult to modify literals and constants. While passing a variable as an argument to an in-out parameter, you will put an ampersand (
 &
) right before the name of the variable. The ampersand will show that it can be modified by the function. It is not possible for in-out parameters to have default values and you cannot also mark a variadic parameter as an in-out.

The case below is a case of a function called
 swapTwoInts(_:_:)
 , with two in-out integer parameters named
 a
 and
 b
 :

[image:]

The
 swapTwoInts(_:_:)
 function is there to swap the value of
 b
 into
 a
 , and that of
 a
 into
 b
 . The function is able to perform this swap by storing the actual value of
 a
 in a temporary constant named
 temporaryA
 , assign the value of
 b
 to
 a
 , and then assign
 temporaryA
 to
 b
 .

The
 swapTwoInts(_:_:)
 function can be called with two variables of type
 Int
 in order to swap their values. Note that there is an ampersand before the names of
 someInt
 and
 anotherInt
 while passing them to the
 swapTwoInts(_:_:)
 function:

[image:]

The example above depict that the original values of
 someInt
 and
 anotherInt
 have been modified by the
 swapTwoInts(_:_:)
 function, even though they were initially defined outside of the function.

Function Types

Every function is associated with a specific
 function type
 , consisting of the return type and the parameter types of the function.

For instance:

[image:]

Two simple mathematical functions named
 addTwoInts
 and
 multiplyTwoInts
 were defined by the above example. Each of these functions take two
 Int
 values, and then return an
 Int
 value, which is actually the yield of carrying out an appropriate mathematical operation.

The type of these two functions is
 (Int, Int) -> Int
 . read as:

“A function with two parameters, both of type
 Int
 , and that returns a value of type
 Int
 .”

The case below is another example, for a function with no parameters or return value:

	

func
 printHelloWorld
 () {

	

print
 ("hello, world"
)

	
}

The type of this function is actually
 () -> Void
 , or you can call it “a function with no parameters, and returns
 Void
 .”

Using Function Types

Function types are used just like most other types in Swift. For instance, you can define your variable or constant to be a part of the function type and then assign a suitable function to the variable;

	

var
 mathFunction
 : (Int
 , Int
) -> Int
 = addTwoInts

You can read the above code as;

“Let a variable called mathFunction be defined with a type of ‘a function that accepts two Int values, and returns an Int value.’ Set this new variable to refer to the function called addTwoInts.”

This kind of assignment is allowed by the Swift’s type-checker since the addTwoInts(_:_:) function actually has the same type as that of the mathFunction variable.

The assigned function can now be called with the name
 mathFunction:

	

print
 ("Result:
 \(mathFunction
 (2
 , 3
))"
)

	

// Prints "Result: 5"

You can even assign a different function that has the same matching type to the same variable, in the same way you do for nonfunction types
 .

	

mathFunction
 = multiplyTwoInts

	

print
 ("Result:
 \(mathFunction
 (2
 , 3
))"
)

	

// Prints "Result: 6"

As it is with many other types, you can let Swift infer the function type on its own anytime you assign a function to a variable or constant;

	

let
 anotherMathFunction
 = addTwoInts

	

// anotherMathFunction is inferred to be of type (Int, Int) -> Int

Function Types as Parameter Types

Function type like (Int, Int) -> Int can be used as a parameter type for another function. This allows you to enable the function’s caller to provide some aspects of a function’s implementation when the function is called.

The below case is an example that prints the result of the math function above
 ;

[image:]

The above case defines a function called printMathResult(_:_:_:),
 with three parameters. The first parameter is named mathFunction
 , and has type (Int, Int) -> Int
 . Any function of that type can be passed as an argument for the first parameter. The 2nd and 3rd parameters are named a
 and b
 , and both are of the Int
 type. These two parameters will be used as the two input values for the math function.

The printMathResult(_:_:_:)
 will be passed the addTwoInts(_:_:)
 function when it is called, followed by the integer values 3
 and 5
 . The provided function is called with the values 5 and 3 and 8 is printed as the result.

The function of printMathResult(_:_:_:)
 is to print a call’s result to a math function of a suitable type. It doesn't even matter what that function’s implementation is actually doing—what matters is that the function should be of the right type. This lets printMathResult(_:_:_:)
 to hand off some of its functionality to the function’s caller in a type-safe way.

Closures

Another useful feature of the Swift language is that of
 closures.
 A closure is a small, anonymous piece of code that can be used like functions. Closures are good for passing to other functions in order to tell them how they should perform a particular task. To give you an overview of how closures work, consider the built-in sort function. This function takes an array and a closure, and deploys that closure to see how two individual elements of that array should be ordered (i.e., which one should go first in the array):

[image:]

If you want to sort an array so that small numbers will go before big numbers, a closure can be provided detailing how that can be done like the one below;

[image:]

Closures have a special keyword, in
 . The in
 keyword enables Swift to know where to break up the closure from its definition and its implementation. So in the previous example, the definition was (n1: Int, n2: Int)->Bool, and the implementation of that closure came after the in
 keyword: return n2 > n1.

A closure, just like a function, takes parameters. In the preceding example, the closure clarifies the type and name of the parameters that it works with. However, you don’t need to be quite so verbose—the compiler can infer the type of the parameters for you, much like it can with variables. Notice how types are obviously absent in the parameters for the following closure:

[image:]

You can make it even terser, if you don’t really care what names the parameters should have. If you omit the parameter names, you can just refer to each parameter by number (the first parameter is called $0, the second is called $1, etc.). Additionally, the return
 keyword can be omitted if your closure only contains a single line of code:

[image:]

Lastly, if the last parameter in a function call is a closure, it can be placed just outside the parentheses. However, this is just a way to improve code readability and does not necessarily change how the closure works.

[image:]

The defer Keyword

Sometimes, you may be planning to execute some codes but at a later time or schedule. For instance, if you are writing code that opens a file and carries out some changes, you will also need to make sure that the file is closed when you are done. This is important, and it is easy to forget when you start writing your method. The defer keyword allows you to write code that will run at a later time. Specifically, code you put in a defer block will run when the current flow of execution leaves the current scope—that is, the current function, loop body, and so on:

[image:]

CHAPTER FIVE

GETTING READY ON THE ROUTE TO DEVELOPING iOS 14 BASED APPS

The Apple Developer program

One of the first things you must understand on your way to learning the essentials of iOS 14 based applications is deciding whether it becomes essential for you to join the Apple Developer program
 . There are many benefits you stand to get when you join the Apple Developer program as a paid membership. There are two ways of enrolling in the Apple Developer program; individual membership
 and the organizational
 or company membership.
 The individual membership
 is when you paid the membership to join the program by yourself while the organizational membership
 is when your company has a paid membership already and you are only expected to join through your company’s link. Today, membership into the Developer program for Apple as an individual costs 99 USD per year.

Prior to the on-boarding of the iOS 9 in 2015 and the Xcode 7, one of the key benefits of the Apple Developer program was that you can test your iOS based apps on physical iOS devices with the creation of provisioning profiles and certificates once you joined the program. However, this seemed too tedious and demanding at that time. Fortunately today, the only requirement you need to have at your disposal if you plan to join the Apple Developer program is your Apple ID.

Of course there are things you can actually get done on the platform without paying the membership fee, but there exists some app development stuff that you won’t be able to access without your paid membership. Features like the Apple Pay, Game center, In-App purchasing and access to iCloud are only possible with the paid membership. This is why it is advisable to endure and pay the 99 USD membership fee to enjoy premium packages from the Developer program.

The paid Apple Developer Program
 gives you, as an engineer, access to some beta development tools, distribution ability through Apple’s App Stores and beta operating system releases. It also lets you use some of the cloud-dependent features of the developer platforms, such as iCloud, CloudKit, Maps, In-App Purchase and App Groups. A lot of the cloud-dependent features, like the iCloud will be used more often in this guide. You will not be able to run these apps if you have not subscribed to the paid membership yet.

The following are the benefits of a paid membership;

-
 You will have unrestricted access to the Apple Developer Forums. The Developer forum is often frequented by engineers from Apple itself and you are allowed to ask any question bothering you. The forum also has the presence of developers like you who are there to learn, attempt to ask questions and rub minds together. Although, the forum can still be accessed with your Apple ID.

-
 You will also have unrestricted access to beta versions of any OS before they are released into the market for public use. This way, you can easily test your applications on the next iOS version, iPadOS, tvOS and WatchOS so that you will be able to actually know if there is any editing that you can do to your app to make the app compatible with the latest OS. You will also have access to the beta versions of the development tools.

-
 You will not be able to submit or publish your apps to the App store for sale without a paid Developer membership. What this means is that membership will be needed at some point when you want to publish your apps to the App store for download by users. Even you cannot release your app for free on the App store without a paid membership.

That said, registering for the Developer Program is not necessary if you only plan to view the documentation or you just want to download the current version of the developer tools, so you can play around with writing apps without opening your wallet to pay.

The next thing, then, is how to get registered on the Apple Developer program.

Enrolling in the Apple Developer Program

To enroll in the Apple developer, you will need the following;

-

 As an individual

	
Apple ID with the two factor authentication enabled

	
Basic information about you, including your address and legal name.

	
Your credit card details.

-

 As an organization

	
Apple ID with the two factor authentication enabled

	
A D-U-N-S number.
 The D-U-N-S number is used by Apple to confirm your company’s legal entity status and identity. It is a unique 9 digits obtained from Dun & Bradstreet used widely as a business identifier for companies. If your company does not have a D-U-N-S number, you can request one for your company. Visit https://developer.apple.com/support/D-U-N-S/
 for how to check if your company already has a D-U-N-S number, otherwise you can register by providing your details.

	
Legal entity status. Apple will not accept a fictitious business name. Your business must be registered as a legal entity.

	
Legal binding authority: The person registering for the Apple Developer program on behalf of the company must have legal authority to bind the company with Apple’s legal agreements.

	
Your organization must have a working website.

-

 Once all the requirements have been met, you can proceed by visiting
 https://developer.apple.com/programs/enroll/
 , scroll down the page and tap on
 “Start your enrolment.”

-

 You will be taken to a page where you are expected to input your Apple ID. Enter your Apple ID and tap on the arrow to proceed.

[image:]

Follow all the instructions that will be prompted on the subsequent page to register as an individual or to register for your organization.

Note: If your plan is to build iOS applications for your company, then you need to check, first, whether your company already has a paid membership. To do this, kindly confirm from your program admin and ask him/her to invite you into the Developer program from the member center of the Company’s Developer program. Once the admin has done this, an email will be forwarded to you from Apple titled “
 You Have Been Invited to Join an Apple Developer Program.”
 The email will contain the link you will follow to activate your membership.

It won’t take up to 24 hours before you are finally accepted into the Apple developer program as a solo member. You will receive the notification from Apple in the form of an activation mail. If it is your company you are enrolling for, acceptance can take weeks or months to be activated because of the extra verification requirements involved.

While you are awaiting activation email from Apple, you can log into the Member Center, albeit with a restricted access, using your Apple ID and password at the URL below;

https://developer.apple.com/membercenter
 .
 Once you have logged in, tap on the “
 your Account”
 tab located at the top part of the screen to see the active status of your enrollment. Once you received the activation email, simply log in to the member center and you will be able to see that you now have access to a wide range of resources.

CHAPTER SIX

THE Xcode 12 and the iOS 14 SDK

Installing Xcode 12 and the iOS 14 SDK

You cannot build an iOS app without an iOS SDK and Apple's Xcode Development environment. You will be wondering, at this time, about what Xcode is. Xcode is Apple's integrated Development environment where you will have access to code, build, test and debug your iOS apps. The Swift language is used to code iOS applications and the basics have been discussed in the earlier chapters. The Xcode provides an IDE where you will get to use the Swift language to compile and run codes for your iOS applications. Xcode actually contains tools for developers to manage their whole development workflows, till the point where they can submit such apps to the App store.

This section will talk about how you can install the latest Xcode 12 and the iOS 14 SDK, and also delve into their basic features.

You can download and install the Xcode 12 by following the steps below;

-

 Navigate to the Apple Developer page with the link
 https://idmsa.apple.com/IDMSWebAuth/signin?appIdKey=891bd3417a7776362562d2197f89480a8547b108fd934911bcbea0110d07f757&path=%2Fdownload%2F&rv=1
 , and then sign in with your Apple ID and Password.

-

 Upon successful login, you will be taken to a page where you can download the new Xcode 12. The Xcode file size is usually heavy, so you must ensure that you have enough space on your Mac computer.

-

 Tap on the blue
 “Download”
 button.

-

 Upon successful download, double click on the file to start the “Un-zipping” process.

-

 After unzipping, you can install the Xcode 12 on your MacOS by dragging the file from the “downloads” folder and then inside “Application” folder on your MacOS.

-

 To open the app, scroll to the “Application” folder on your computer and tap twice on the app icon. You can even launch the app from your Mac launch pad.

-

 Once you have successfully launched the app, you will be greeted with the Xcode 12 welcome page.

Note: The iOS 14 SDK is downloaded from the Apple Developer page.

Creating a project with Xcode 12

Once you receive the Welcome page, simply tap on the “
 Create a new Xcode project”
 to start creating a fresh Xcode project. A fresh Xcode project will enable you to develop apps for iOS, watchOS, tvOS and iPadOS. When you initiate a project, all the files and resources to be deployed to develop your Apple apps will be organized and you can quickly and conveniently use them wherever you want. There are available templates for each OS that you want to develop, ranging from iOS, tvOS, iPadOS etc. If you wish to see the interactive preview of what you are working on, select Swift as the programming language and Swift UI as the programming interface. Once a project has been created, you will be able to access the main Xcode window. It is from the window that you will be able to access, edit and manage all of your projects.

Follow the steps to create;

	
Click twice on your Xcode icon to launch Xcode, and from the “Welcome to Xcode” window, tap on the “Create a new Xcode project.” Alternatively, select File
 , click on “New”
 and tap on “Project.”

	
You will be prompted with a window where you can choose the target operating system.

	
Choose a template under Application and click on Next.

For instance, if you plan to build an iOS app that has a single empty view, choose Single View App. If you want to create macOS apps, choose App. To create a watchOS app that can run without a companion iOS app, choose Watch App.

	
Again, you will be prompted with another window where you are expected to input some details in the text field and then configure your project by choosing options from the pop-up menu.

You must input a name for your product (you can let the product name be Hello Swift)
 and the organization identifier (a DNS string that can identify your organization. In case your organization does not have, simply use com.example and then follow this by your organization’s name) and the name of the product you are building. You will also input the name of your organization (fill this with your name in case you are not working for an organization). You will see a bundle identifier (which is obtained from your product’s name and your organization identifier) right below the organization identifier box.

	
You will be prompted with a team pop-up menu where you are expected to select your team.

You can add an account if the “Add account” button appears. This step can be skipped since you can actually add a team to your project at a later time.

	
Select your programming language from the language pop-up menu. Here, you will select Swift
 as the programming language.

	
Choose an interface from the User Interface pop-up menu. You will select Swift UI here.

	
Tap on the “Include Unit Tests” and “Include UI Tests boxes” to add a test target to your project.

	
Tap Next, and you will get a window asking you where you want to save your work.

	
Choose a location for your project, optionally choose “Create Git repository on my Mac” to deploy source control (recommended) and then tap on “Create.”

The Xcode 12 Main Window (The Xcode 12 interface)

The Xcode 12 main window is actually an interface where you get to see, edit and manage all of the essential parts of your project. As discussed, Xcode displays your entire project in a single window, which is divided into a number of sections. You can open and close each section at will, depending on what you wish to see.

Let us take a look at each of these sections and examine what they do.

The editor

The Xcode editor is the place where you are going to spend a lot of time since most of the coding is done there. The editor is where all source code editing, project configuration and interface design are carried out. The editor often changes depending on which file you are working on. If you are editing your source code, the editor will be a text editor, with code completion, syntax highlighting, and all the usual features that developers have come to expect from an integrated development environment. If you are modifying a user interface, your editor will be a visual editor, which will enable you to drag around the major part of your interface. Each file you opened has their special editor. When you initiate your first project, the editor will begin by displaying the project settings. You can divide the editor into an assistant editor and a main editor. The assistant editor displays files that are related to the file you are working on in the main editor. It will continue to show files that have a relationship to whatever is open, even if you open different files. For instance, if you open an interface file and then open the assistant, the assistant will, by default, show related code for the interface you are editing. If you launch another interface file, the assistant will display the code for the newly opened files.

At the top of your editor, you will see the jump bar
 . The jump bar allows you to quickly jump from the content that you are editing to another piece of related content, such as a file in the same folder. The jump bar is a fast way to navigate your project.

The toolbar

The Xcode toolbar serves as mission control for your entire interface. The Xcode is the only part of your Xcode that will not change significantly as you develop your applications, and it also functions as the place where you will get to control what your code is actually doing.

The Xcode Toolbar contains the following items;

Run button

When you tap on the run button, the Xcode will be instructed to compile and start your application. Depending on which application you are running and the settings you selected, the run button
 will have different actions;

-
 If you are building a Mac application, the new app will show in the Dock and will run on your machine.

-
 If you are building an iOS application, the new app will open either on a connected device (like iPhone or iPad) or on the iOS simulator.

Additionally, if you tap and then hold on the run button
 , you can change it from run
 to some other actions like Test, Analyze
 or profile.
 The Test action will run any unit tests that you have initiated; the Profile action will run the application Instruments, while the Analyze action will examine your code and help you figure out potential problems and bugs.

[image:]

Stop button

Simply tap on the Stop button
 if you plan to terminate any task that is currently being run by the Xcode - if it is creating your application, it terminates; and if your application is running in the debugger, it stops it.

[image:]

Scheme selector

In Xcode, Schemes
 are called build configurations—that is, what you want to build, how the product will be run on a device, and where it will run (will it be run on your computer or on a connected device).

[image: j t h.png]

Your projects can feature multiple apps inside them. Using the Scheme selector, you can choose which target or app that you plan to create. To select a target, tap on the left hand side of the scheme selector. You can equally choose where your application will run. If you are creating a Mac application, you might likely be planning to run the application on your Mac. If you are creating an iOS application, you, however, have the option of running the application on an iPad simulator or an iPhone simulator. (These are actually the same application; it simply changes shape depending on the selected scheme.) You can also decide to run the application on a connected iOS device if the device has been set up for development.

Status display

The status display displays what the Xcode is doing—creating your application, installing an application on an iOS device etc.

If you have more than one task in progress, you will see a small button on the left side which cycles through your active task when you tap it.

Editor selector

The editor selector is the one that will determine how the editor will be laid out. You can choose to show either a single editor, the version editor or the editor with the assistant, so that you can always compare different files’ versions if you are deploying a revision control system such as Subversion or Git.

The navigator

The lefthand area of your Xcode window is the navigator
 , which presents information

about your project. Tapping on a specific button in the navigation bar will prompt different parts of the project inside the content area.

[image:]

From left to right, the navigation section has nine (9) tabs which include;

Project navigator

The project navigator will list various files in your project. This navigator is actually the most common as it actually determines what will be displayed inside the editor. Whatever you choose in your project navigator will be what you will see in the editor area.

Source control navigator

The source control navigator helps to access your source control working copies, commits, branches, tags and remote repositories.

Symbol navigator

All of the symbols in your project can be accessed with the symbol navigator. It helps list all the functions and classes existing in your project. If you want the quick summary of a class or you just want to jump directly to a method in that class, you will find the symbol navigator handy.

Search navigator

With the Search navigator, you can always search across your project while looking for specific texts. (Simply use the ⌘
 -Shift-F shortcut. Press ⌘
 -F if you plan to search the current open document.)

Issue navigator

The issue navigator lists all the problems encountered by Xcode in your code. This can include compilation error, warnings, and issues spotted by the built-in code analyzer.

Test navigator

The test navigator displays all the unit tests that are associated with a project. Unit tests used to be an optional component of Xcode but are now built into Xcode directly.

Debug navigator

The Debug navigator will become active during program debugging. You will be able to check the active state of the threads that constitute your program.

Breakpoint navigator

With this navigator, adding, editing and deleting breakpoints that you set while debugging your program becomes easier.

Report navigator

The Report navigator lists all the activity that Xcode has carried out with a project (like building, analyzing and debugging). It is even easier to navigate back and check previous build reports in your Xcode session.

The Debug area

About the debug area

You can inspect your code while running your application by using the Xcode debugger. Automatically, you will see the debug area and the Debug navigator when you create and start your application. If necessary, you can display the navigator area by tapping on the left button ([image:]
) and display the debug area by tapping on the middle button ([image:]
) on the right of your toolbar.

[image:]

The following are the three main parts of the debug area:

●

 The debug bar
 has buttons that you can use to enable or disable all breakpoints, enable graphical debugging of memory state and view, control the execution of your app, simulate location, jump to stack frames and override environment settings.

●

 The variables view
 brings the list of variables that are available to inspect within the scope of your present location in the code. This list is actually a disclosable hierarchy, showing the values of all parts of the structure of a variable as you continually tap the disclosure triangles.

●

 The console
 contains a text area like an interactive Terminal. The console can be used to interact directly with the LLDB (The LLDB command-line debugger gives underlying debugging services for app development on all of Apple platforms. You can prompt LLDB debugging commands from your Xcode debugging console while debugging an app or from the Terminal window.), view result from use of Print Description, and also work with standard input and output from your app. For instance, enter po [expression] and the debugger will execute the expression. As you are typing your expression, the debugger will continually offer you useful suggestions for completing what you are typing.

[image:]

Multiple applications and processes can be debugged at the same time. You will need to create a separate project window for each session.

View threads in the debug area

You can leverage the debug area to examine the stacks and threads of your running app. When you choose a thread, or a stack within a thread, in the debug bar, the Xcode will show you the corresponding assembly code or source file in the source editor. The debug area opens automatically when you create and run your app.

[image:]

	
In the debug area, tap on the Pause button or exercise a little patience for the application to terminate at a breakpoint.

	
In the debug bar, select a thread from the displayed pop-up menu.

	
In the source editor, check the corresponding assembly code or source code.

View variables in the debug area

In the debug area, you can uncover a problem in your source code by inspecting the value of a variable. The debug area opens automatically when you create and run your app.

[image:]

Each item inside the variables view list displays; the name of the variable as it appears in the code, the current value of the variable, the runtime type of the variable, and a summary for the variable, if available. The icon in the name of the variable indicates the kind of the variable.

View variable

	
In the debug area, tap on the Pause button or wait for your app to terminate at a breakpoint you had set previously.

The variables that are in scope will be shown in the variables view of the debug area. The variables that have been deallocated appear dimmed and cannot be inspected.

	
Select a scope option from the pop-up menu at the lower-left corner of the variable view.

Display recently accessed variables:
 Select Auto.

Display only local variables:
 Select Local.

Display all variables, registers, globals, and statics:
 Select All.

	
You can filter your results by entering texts inside the search field located at the bottom-right corner.

	
Tap the disclosure triangle located to the left side of the variable to access the structure of a variable.

	
You can edit the summary format of a variable by Control-click on the variable and then select Edit Summary Format… from the shortcut menu.

[image:]

In the popover, input a valid expression and tap “Done.” The default formatter will be overridden by this expression and is used to create a summary for all variables of this type.

	
The value of a variable can be edited by Control-click the variable, select Edit Value… from the shortcut menu, and input a new value.

View memory for a running app

	
In the debug area, tap on the Pause button or exercise a little patience for the application to terminate at a breakpoint you had set previously.

	
Command-click on a variable and select View memory of “variableName
 ” or choose the Debug > Debug Workflow > View Memory (Shift-⌘
 -M) menu item to launch the memory console
 .

[image:]

The memory console displays the ASCII contents and hexadecimal of particular memory address ranges.

	
Tap on the memory addresses column to pick between hexadecimal and decimal representations.

	
Input a memory address or the variable’s name in scope to navigate to that region of memory.

	
Click the previous and next page controls to navigate between pages of memory.

	
Click the lock view button to prevent updates to the contents of memory in the current view.

	
Choose a different number of bytes to show on a single page.

Managing project file

About the Project navigator

The project navigator, like it has been said before, can be used to launch, add, delete, and organize files in a project. Tap on the Project navigator button ([image:]
) located at the top section of the navigator area and your project files will be shown in the content area below.

[image:]

Open a file:
 Tap the file to quickly open the file in the editor area.

View properties of a file:
 Select the file by clicking on the file, then tap View > Inspectors > Show File Inspector. The properties of the file will be displayed in the File inspector.

Search for a file:
 Write anything you want to search inside the filter field below the content area.

Show recently modified files:
 Tap on the Recent Files icon ([image:]
) inside the filter field.

Show files with source control status:
 Click on the Source Control icon ([image:]
) inside the filter field.

Unlock a file:
 Choose the file, then select File > Unlock. (If the file is already unlocked or you don’t have permissions to unlock the file, the menu item is disabled.)

Choose a relative or absolute location:
 In the File Inspector, choose a location from the Location pop-up menu. For example, choose Relative to Group (recommended) to preserve references when you move your project folder.

Modify the default move and copy behavior:
 To force a move operation, press and hold Command (⌘
) while dragging files. To force a copy operation, press and hold Option (⌥
). To force a reference operation, press and hold Command-Option (⌘-⌥
).

Add files and folders to a project

Xcode has templates for the common kind of files you may wish to add to your project, such as Swift files or Playgrounds. You can as well add copies of, or references to, existing files and folders on your computer.

[image:]

Adding existing files and folders

	
In the Project navigator ([image:]
), choose the precise location where you want the file to be added.

	
Tap on the Add button (+) in the filter bar and select File from the pop-up menu (or choose File > New > File).

	
Tap iOS, tvOS, watchOS or macOS located at the top of the page to bring the templates for that platform. The templates are often organized into groups like Source, Resources and User Interface.

	
Choose a template for the file type, and tap “Next.”

	
In the following window, input the required information and tap “Next.” For instance, fill in a class name for a class implementation file.

	
In the last page that will be prompted, select a location and input a filename (if applicable).

	
From the Group pop-up menu, select a group. If the group is associated with a folder (the default when you create a group), the project structure is the same as the file system structure.

	
Choose the targets that you plan to add the file to.

	
Tap on “Create.” The new file is selected in the Project navigator and opens in the appropriate editor.

Adding existing files and folders

	
In the Project navigator ([image:]
), choose the destination group or project for the item you want to add.

	
Tap on the Add button (+) inside the filter bar, select Add Files to “[Project Name]” from the pop-up menu (or choose File > Add Files to “[Project Name]”), and choose the files or folders.

	
Tap on options
 at the bottom of the page.

The listed are the options for how your folders and files can be added; Choose

●

 Copy items if needed:
 Copies the files and folders to the project folder.

●

 Create groups:
 Keeps the group structure the same as the file structure.

●

 Create folder references:
 Shows the folders in the Project navigator but doesn’t copy them to the project. A folder reference
 is a reference in the Project navigator to a folder in the file system.

[image:]

In Add to targets, select the targets (target is the product that you want to build) that you wish to add the file to.

Optionally, tap on New Folder if you want to add a folder for your files.

Click Add.

Note:
 You can also drag the files from the Finder to a location in the Project navigator to add them.

Deleting files and folders

	
In the Project navigator ([image:]
), choose the files and folders.

	
Choose “Edit” and then tap “Delete.”

	
Choose a delete option from the displayed dialog.

Remove the files and folders from the project and the file system:
 Click Move to Trash.

Remove the files and folder references from the project only:
 Click Remove References.

[image:]

Organize files in groups

Organize the files that you have added to your project with Groups. For instance, the project you created from a template will contain a group containing the files for each target. A group is associated with an underlying folder that has the same name by default.

Add a new group:
 In the Project navigator, tap where you plan to add the group, then select File > New > Group. To create a group without an associated folder, click File, select New and choose “Group without Folder.”

Add files to a new group:
 Choose the files, then tap File > New > “Group from Selection”. The files will be transferred to the associated folder in the file system.

Add files to an existing group:
 Choose the files and then drag the files to the group. If the group is associated with a folder, the files will be moved to the associated folder.

Rename a file or group: Click twice on the group or file and then input the new name for the group or file.

Change a group’s associated folder:
 Tap on the group, then select View > Inspectors > Show File Inspector.

CHAPTER SEVEN

AN INTRODUCTION TO Xcode 12 PLAYGROUND

With the Playground feature in the Xcode 12, learning and programming with Swift has never been that easier. Playground offers an interactive environment where users (developers) can enter executable Swift codes with the result showing in real time.

Create, edit, and execute playgrounds

You can use the playgrounds feature in Swift to learn and navigate the world of Swift, prototype parts of your app, and also create learning environments for others. The interactive Swift environment allows users to experiment with code, create custom views and even explore system APIs. Notes and guides can be added in your codes for other users by using the rich comments. Also, you can add navigation and assemble concepts that are similar into pages. In playgrounds, you can run code from the insertion point supporting an incremental development style. When every part of your codes has been perfected in the playgrounds, you can then transfer your codes successfully into your project.

[image:]

How to create a playground

	
Tap “File,” select “New” and then choose “Playground.”

	
From the prompted page, choose the platform you want your playground to run on.

[image:]

	
Under Playground, choose a template out of the available templates, then tap Next.

The available templates are:

●

 Blank:
 A generic playground.

●

 Game:
 A playground developed based on SpriteKit.

●

 Map:
 A playground that deploys MapKit.

●

 Single View:
 A playground with a single view.

Tap on the
 “Next”
 button at the bottom and you will be directed to a page where you can enter the file’s name and choose a location. Once you have done these, tap on
 “Create.”

Edit a playground

It is worth telling that the source editor in a playground has the exact features as the source editor inside the project editor.

●

 Input Swift code into the playground source editor: Xcode parses your codes as you enter them in the source editor. If there exists a syntax error in your code, you will receive a prompt (message) beside the line of code that contains the syntax error. To see the full message that talks about the issue and suggests fixes, tap the error or warning icon. Then tap on the Fix button next to a suggestion to update your code.

●

 Deploy the code completion if you want to avoid syntax error henceforth.

Xcode gives you inline suggestions for completing the name of a symbol. Tap on an item in the suggestion list or deploy the Up Arrow or Down Arrow keys to choose it. Then hit Return to accept the suggestion.

For a method or function containing parameters, code completion places a placeholder for each parameter. To scroll to the next placeholder, press Tab; to move to the previous placeholder, press Shift-Tab.

●

 To replace texts or find specific texts, select Find followed by an option.

For example, click Find > Find and Replace, then enter text in the Replace and with fields and press Return.

Run a playground

You can run your code automatically by stopping entering code or rather manually when you are ready. While your code executes, you will see a progress indicator in the toolbar showing on the right, and when the code ends, you will obtain the results in the same location.

●

 To have a view of the playground live view while you are still running the code, launch the assistant editor.

●

 To switch between run modes, tap and hold the Run button, then select:

●

 Automatically Run:
 Choosing this, you will be able to run your code each time you enter a statement or pause typing.

●

 Manually Run:
 Choosing this, you will be able to run the code only when you click a Run button.

Note:
 In most of the available templates, the manual mode is the default mode.

To run code from the insertion point in manual mode, hover the pointer over the line number in the gutter, then click the Run button that appears.

To run the entire code listing in manual mode, click the Run button at the bottom of the window.

Add, edit, and view rich comments

You can add formatted text to your playground by using the playground markup format. The markup format supports rulers, headings, lists, emphasis, code voice, bold, assets, links, and more. The rendered text can be accessed by switching to rendered markup mode, and you can switch to raw text mode by editing the markup.

The below markup renders as a title followed by a bulleted list.

/*:### Some Animals* Cat* Dog* Llama*/

[image:]

View the rendered markup:
 To view the rendered markup, select “Editor” and click on “Show Rendered Markup.”

Edit the raw text:
 To edit the raw text, select “Editor” and click on “Show Raw Markup.”

Add auxiliary code to a playground

If you plan to add code that you don’t want to recompile each time you run the playground or you don’t want the user to see the codes in the playground, simply add the source files to the playground or a page Sources folder. Xcode will compile files in Sources folders only when you add the files or save edits to the files.

The public symbols in files you added to the playground Sources folder will be made available to all pages in the playground. On the contrary, the public symbols in files you added to the page Sources folder will only be made available to the page containing the Sources folder.

Important:
 The compiled code imports into a playground as a module. To view a symbol (class, method, function, variable, or protocol) in the playground, the auxiliary Swift source file must use the public keyword to export the symbol.

Add a new source file

	
Launch the Project navigator (click on View, select “Navigators” and then click on “Show Project Navigator”).

	
In your Project navigator, choose the Sources folder for the page or playground, tap on the Add button (+) located in the filter bar, then select Add Files to "Sources" from the pop-up menu (or tap on File, select “New” and click on “Add Files to "Sources"”).

A new Swift file will appear in the Sources folder and will be opened in the source editor.

[image:]

	
Edit your code in the file, then select File > Save (Command-S) to compile the code.

Add an existing source file

	
In your Project navigator, choose the Sources folder for the page or playground, tap on the Add button (+) located in the filter bar, then select Add Files to "Sources" from the pop-up menu (or tap on File, select “New” and click on “Add Files to "Sources"”).

	
In the dialog that is displayed, choose the source file and then click Add.

The file appears in the Sources folder.

View results of an executed statement

See the detailed result of an executed statement in a Quick Look preview or simply by adding a results view to your playground. Some results can be viewed in different ways. For instance, the set of results for a number variable in a loop can be viewed as a set of values for each iteration, a graph of the values for each iteration of the loop or the value of the last iteration.

View a Quick Look preview of the results

●

 In the sidebar, hover the pointer adjacent to the Show Result button for the line of code, then tap on the Quick Look button that appears.

The results view appears in a popover.

[image:]

Add a results view to the playground

	
In the sidebar, tap on the Show Results button for the line of code (or position the insertion point in the line of code, then select Editor and tap on “Show Result for Current Line).

A results view will show in the editor below the line of code.

[image:]

Hide a results view in the playground

●

 In the sidebar, tap on the Show Results button for the line of code (or position the insertion point in the line of code, then select Editor and tap on “Hide Result for Current Line”).

Resize a results view

	
Hover the pointer over the corner or edge of the results view.

The pointer will change to a double-headed arrow.

	
Resize the edge of the result view by dragging the edge.

Change the display of a results view

You can access some results in different ways. For instance, you can view the value of a number in a loop as a graph, as the last value or as a series of values.

●

 Control-click the results view in either the Quick Loop popover or the source editor and then select an option from the popup menu:

Latest value:
 Shows the current value.

Value history:
 Shows all the values.

Graph:
 Shows the values as a graph.

You can alternatively select the results view in the source editor, then click on “Editor > Result Display Mode” and any of the above options.

Add a color, file, or image literal to a playground

You can create literals in your playground code when the value of a color, file, or image does not need to change. The same literal can be used in many places in your playground. The types of literals are:
 Color, Files
 and
 images.

Adding a color literal

	
Position the insertion point inside the code where you plan to add the color literal.

	
Choose “Editor
 ” and select “Insert Color Literal
 .”

[image:]

	
Tap twice on the color wheel that shows and then select a color from the color picker.

Add a file literal

-

 Position the insertion point inside the code where you plan to add the file literal.

-

 Choose “
 Editor
 ” and select “
 Insert File Literal
 .”

-

 In the page that shows, choose a file, then click Open.

Adding a file literal to a playground page will automatically add it to the page’s Resources folder; otherwise, it will be added to the playground Resources folder.

Add an image literal

-

 Position the insertion point inside the code where you plan to add the file literal.

-

 Choose “
 Editor
 ” and select “
 Insert File Literal
 .”

-

 In the page that shows, choose a file, then click Open.

Adding a file literal to a playground page will automatically add it to the page’s Resources folder; otherwise, it will be added to the playground Resources folder.

Alternatively, you can drag an image file to the source editor.

Copying and moving literals

●

 Use the Edit menu to cut, copy, and paste literals.

Add, move, and rename playground pages

Add pages to your playground to create separate lessons. Then you can rename the playground pages and change the order.

Add a new page

	
Launch the Project navigator (select View, tap on Navigators and choose “Show Project Navigator”).

	
Choose File, select New and choose Playground Page.

Two new pages will show in the playground group the very first time you add a page to your playground. One will contain the current content of the playground editor and the other will be the new page.

[image:]

Rename a page

	
In the Project navigator, choose the page and tap Return. The page’s name will become editable.

	
Input the new name of the playground page inside the text field and click on Return.

Change the order of pages

●

 Change the order of pages by dragging a page to another location in the list of pages.

Copy a page from one playground to another

	
Launch the Project navigator (choose View > Navigators > Show Project Navigator) in each playground.

	
Drag that page from the source playground to the destination playground.

The page and any associated resources and sources will be copied to the destination playground.

Add an interactive live view

The live views can be deployed to make your playground to be interactive as much as possible, create your own custom elements and experiment with various user interface elements. Add an interactive live view to your playground by importing PlaygroundSupport and setting the live view of the current page to your custom view or view controller.

Note:
 If you choose the Single View template when you create a playground, your code already sets the live view. Simply launch the assistant editor and run the code.

Add a live view

	
In your code, import PlaygroundSupport.

Add this code snippet;

import PlaygroundSupport

	
Set the page’s live to an instance of your view or view controller.

For instance, the Single View template will set your page’s live view to an instance of
 MyViewController
 :

PlaygroundPage.current.liveView = MyViewController()

	
Open the assistant editor in the playground (select View, tap Assistant Editor and click on Show Assistant Editor), then run the code.

The live view will render inside the assistant editor and will not stop running until you stop it or an error occurs.

CHAPTER EIGHT

USING Xcode in SwiftUI Mode

CREATING A SWIFT UI INTERFACE

Show a preview of your user interface

You can display an interactive preview of the SwiftUI code that you edit in the source editor.

As you make edits in your code, Xcode builds and runs the code, and displays the results in the canvas. The codes you enter in the source editor and the user interface layout in the canvas are kept in sync by the Xcode. If a user interface element
 is added to the canvas from the library, Xcode will add the corresponding code to the source file. If you choose an element on the canvas, the corresponding code is selected in the source file. For every element’s properties you change in the inspector, Xcode will add code to the source file.

To get started using SwiftUI, either choose SwiftUI as the user interface when you create an Xcode project, or add a file that uses SwiftUI to an existing project.

Add a file that uses SwiftUI

	
Select “File,”
 tap on “New
 ” and click on “File
 .”

	
You will be taken to another page, choose the platform, choose SwiftUI View under User Interface and then tap “Next.”

	
Another page will be prompted where you will input the name of the structure. Once you are done, tap on “Create
 .”

Optionally, select a group from the pop-up menu and choose an alternate target.

The canvas will appear automatically to the right of the source editor.

Show a preview

	
In the Project navigator, choose a file that uses SwiftUI, then select “Editor
 ” and tap on “Canvas
 .”

Alternatively, you can select Canvas from the Editor Options pop-up menu located on the right of the jump bar.

	
Tap on the Resume button located in the upper-right corner of the canvas to start the preview.

Run the app on a simulated device with or without a debug session

You can switch from the preview to a live preview
 where the app is run on a simulated device directly in the canvas, or switch to a debug preview
 that has a debug session. For macOS apps, the app will run on the desktop, not in the canvas. First display a preview, then deploy the controls in the lower-right corner of the canvas to switch between modes.

●

 Tap on the live preview
 button inside the canvas to start running the app.

iOS,watchOS and tvOS apps will run on a simulated device in the canvas. macOS apps run on the desktop. Click the Bring Forward button in the canvas if the window is not showing.

●

 If you plan to run the app with a debug session, simply Control-click the Live Preview button in the canvas, then select Debug Preview from the pop-up menu.

When the app opens, you will see a debug session in the debug area.

●

 To terminate the debug preview or the live preview, click on the Live Preview button in the canvas. Xcode will go back to the preview mode.

Run on a connected device

For iOS, tvOS, or watchOS apps, your app can be opened on a device from the preview but the app must be code-sighted before launching.

Before you start, you will need to add your Apple ID account and also assign the target to a team, then show the preview.

	
Connect the device to your Mac.

For watchOS apps that depend on an iOS app, connect an iPhone that has been paired with an Apple Watch.

	
Select the Preview on Device button (located below the Live Preview button) in the canvas.

If your app refuses to run, go through the error message above the canvas and click on Diagnostics for more details.

Add views and modifiers from the library

You can lay out much of your SwiftUI user interface with standard views and modifiers that you drag from the library to either the canvas or your source code.

	
In the Project navigator, choose a file that uses SwiftUI, then tap on the Library button (+) located in the toolbar.

The library will open in a separate window. You can alternatively option-click the button to launch the library in a persistent window.

	
Click on the buttons inside the toolbar of the library to switch between the different libraries.

	
Drag an element from your library to the source editor, canvas or inspector.

If you drag an element to the canvas, you will see a valid destination showing in blue and a popover with information will also appear below. If you drag an element to the source editor, the code will shift to show where the code will be inserted.

Regardless of where the changes have been made, Xcode keeps your source code and user interface layout in sync.

Edit user interface element attributes

There are many ways you can use to edit user interface element attributes.

Tip:
 Learning SwiftUI becomes easy when you edit attributes in the inspector and view the resulting changes to the source code.

●

 Command-click the structure in the code or element in the canvas, select “Show SwiftUI Inspector
 ” from the Action menu and then change the attributes in the next pane.

Xcode helps to keep the layout and source code in sync.

●

 Select “View,” tap on “Inspectors” and choose “Show Attributes Inspector
 ,” then change the attributes in the Attributes inspector that appears on the right. Xcode will update the source code.

●

 Input the code in the source editor. Xcode updates the preview.

CHAPTER NINE

Connecting codes with the user interface using the Interface Builder workflow

The Interface builder
 can be used to connect your codes with your app’s user interface.

Note:
 For Swift apps, the SwiftUI can be optionally used to lay out your app interface and see an interactive preview. iOS apps using SwiftUI also have a LaunchScreen.storyboard file that you edit using Interface Builder.

Step 1: Create a storyboard or XIB project

To deploy Interface Builder, select XIB (macOS) or Storyboard as your user interface when you create your project from a template. The project then has a main user interface file (a MainMenu.xib file or Main.storyboard, Interface.storyboard) that features the view controllers and views that appear when your app first launches. For iOS apps, there is also a LaunchScreen.storyboard file for the view that is shown while the app is launching.

Step 2: Open a user interface file

In the Project navigator, choose a user interface file and the file will be opened in Interface Builder in the editor area. The views will appear in the canvas area and the structure of the underlying objects will appear in the outline view. Simply tap on the toggle ([image:]
) below the canvas to expand the outline view if it collapses. The first time you launch a storyboard file, you will see the layout appearing in a default device configuration that you can change later.

To launch the Interface Builder in a separate window, simply control-click the user interface file, then select “Open in New Window” from the pop-up menu.

[image:]

Step 3: Add controls, images, and other UI objects

Drag all of the objects you need in your user interface to the canvas from the library. To open the library, tap on the Library button (+) in the toolbar, then click the Image ([image:]
), Objects ([image:]
), or Color library ([image:]
) to find the objects that you want to drag.

In the canvas, the objects can be repositioned by dragging them to anywhere you want them using the gridlines to help center and align the objects. To change text (for instance, to edit the title of a button), tap twice on the object and then write the text.

Inspectors can also be used to edit objects. Choose the object on the canvas and tap on the Attributes inspector ([image:]
). You can also tap on the Size inspector ([image:]
) to access information about the size and position of a view.

[image:]

For macOS apps, add items to the Touch Bar. Drag any NSTouchBar object from your Object library to a window or custom view. Drag NSTouchBarItem objects to the Touch Bar and connect the items to your code. Then you can preview the items in your NSTouchBar object, test the items using a real Touch Bar on a Mac, or if you don’t have one, using the Touch Bar simulator.

Step 4: Connect views and controls to your code

It is very easy to write the code that implements objects’ behavior as you add them to the user interface. To access the implementation file for the view controller, select Automatic followed by the filename of the class implementation in the jump bar. Then visually connect your code to the user interface object using the Interface Builder.

If you wish to reference an interface object in your code, simply add an outlet connection by control-dragging from the object on the canvas to the code in the source editor where property declarations are allowed. To add an action method that’s called when the user interacts with a control, Control-drag from the control to the method implementation section of the implementation file.

You can remove and modify connections by selecting and either selecting View > Inspectors > Show Connections Inspectors to open the Connections inspector ([image:]
), or control-click to launch the connections panel.

Step 5: View the UI using different device configurations and create variations as needed

First utilize the “View as” button below the canvas to view the user interface using different device configurations that you think most of the end-users of your app will be using. Then create variations of the user interface by tapping on the “vary for trait” at the bottom right.

[image:]

Step 6: Define layout constraints for your app’s user interface

Use Auto Layout constraints to set rules for how the objects should scale and reposition if you observed that the objects in the canvas don’t appear in the location you expect when you change the device configurations. You can add distance and alignment, and size and position constraints. Then use the tools to find and resolve Auto Layout errors and warnings.

[image:]

Step 7: Design the user interface of your app with storyboards

Graphically lay out the user’s path through your app in a storyboard consisting of scenes, segues that connect the scenes, and controls to trigger the segues. First add scenes and views, then add segues between them.

[image:]

Step 8: Preview your layout

The assistant editor can be used to preview your layout in different device configurations. For iOS apps, switch between portrait mode and landscape mode, then select different device families. For macOS apps, you can choose either the Dark Appearance or Light Appearance to preview the layout. If you add localization to your app, you can choose a language from a pop-up menu. If you don’t have localization yet but want to see how your layout handles different string lengths, choose Double-Length Pseudo Language from the menu.

[image:]

Add user interface objects to the canvas

Much of your user interface can be laid out with Views, standard windows and controls from the object library. The objects you found in the library have been tested to work properly and meet Apple’s human interface specifications.

	
In the Project navigator, click on the user interface file and then open the library by clicking on the Library button (+) in the toolbar. The library will be launched in a separate window. Alternatively, you can option-click the button to open the library in a persistent window.

	
In the library toolbar, choose the Object library ([image:]
) and then drag any object to the canvas from the library.

In the canvas, the Interface Builder will highlight a valid destination in blue. Properly align and reposition your object by using the guidelines.

You can alternatively drag the object to the outline view. (Show the outline view by clicking on the Show Document Outline button ([image:]
) located at the lower-left corner of the canvas.)

	
In the inspector area, edit the attributes of the object.

Connecting objects to codes

Add an outlet connection to send a message to a UI object

To allow your code to be able to send messages to a user interface object, simply add a connection from the user interface object to a special property in your class called an outlet
 . For instance, if you want to set the text of a label programmatically, simply add a connection from the label in the user interface file to a label outlet in your code. The interface Builder both adds the declaration for the outlet to your class and connects the instance of your class to the outlet.

	
In Interface Builder, launch the assistant editor by choosing View, tap on Assistant Editor and select “Show Assistant Editor.”

	
Deploy the jump bar located at the top of the assistant editor to choose the implementation file of the object that will send the messages.

	
Control-drag from the object, in the outline view or in the canvas, to the code in the assistant editor.

Xcode will tell you where you can insert an outlet declaration in your code.

	
A popover will be displayed where you can choose Outlet from the Connection menu, fill in the property name, and select a storage reference type.

Use a reference type of strong for objects that are not implicitly retained such as gestures and array controllers.

The instance of the class that will be connected to the outlet appears in the Object field.

[image:]

	
Click Connect.

Interface Builder will add the declaration for the outlet to the class. Outlets are defined as IBOutlet properties. The IBOutlet keyword informs Xcode that this particular property can be connected to your user interface file.

	
Utilize the outlet property in your code. Now, you can get and set the properties of the object in your code.

Add an action connection to receive messages from a UI object

Your object will receive messages from a control if the object is the target of an action specified by the control. For instance, when the user clicks on a particular button, an action message is sent by the button to a target. When an action connection is added, the interface Builder will add an action method to your class and sets the target for the control to an instance of your class. Then you are responsible for implementing the action method.

	
In Interface Builder, launch the assistant editor (click on View, tap Assistant Editor and click on Show Assistant Editor).

	
Use the jump bar located at the top of the assistant editor to choose the implementation file of the object that you want to receive the action message.

	
Control-drag from the control, in the outline view or in the canvas, to the code in the assistant editor.

Xcode will always indicate the part where you can insert an action method in your code, or if you hover over a method, Xcode will tell whether it can be the action for the target.

	
In the displayed popover, select Action from the Connection menu, input the name of the action method, and select an event from the Event pop-up menu.

[image:]

	
Click Connect.

In the implementation file, Xcode will insert a code snippet for the action method. The IBAction return type is a special keyword showing that you can actually connect the instance method to your user interface file. Xcode will set the target of the control to an instance of your class (for instance, a view controller object), and sets the control’s action to the action method selector. The action message will be set to your object at runtime when the specified event occurs.

	
Implement the action method. It is your duty to write the code for the action method.

Connect from an object to code

Connecting an object to source code requires you to add the declaration in the outlet and the class or action connection at the same time. An object can also be connected to an existing method in the source code.

	
In Interface Builder, open the connection panel by control-clicking an object.

	
In Interface Builder, launch the assistant editor (click on View, tap Assistant Editor and click on Show Assistant Editor).

	
Use the jump bar located at the top of the assistant editor to choose the implementation file for the outlet or action.

	
In the connections panel, drag from a connection well (open circle on the right side of an outlet or action) to the code in the assistant editor.

Xcode will always indicate the part where you can insert an action method in your code, or if you hover over a method, Xcode will tell whether it can be the action for the target.

Connect from one object to another

	
In Interface Builder, open the connection panel by control-clicking an object.

	
In the connections panel, drag from a connection well to the other object in the outline view or canvas.

Xcode will always indicate the part where you can insert an action method in your code, or if you hover over a method, Xcode will tell whether it can be the action for the target.

3. Select an event for the action if you drag from an action method in the displayed dialog.

CHAPTER TEN

Build and run your app

You can use real devices or simulated devices to build and run your applications. For macOS applications, your Mac will be the device for this purpose. When you run your app through Xcode, you will see a debugging session opening automatically in the debug area.

	
From the scheme pop-up menu in the toolbar, select a scheme.

Xcode will build a scheme for each target in your project if you have created a project from a template.

[image:]

	
Select a run destination from the scheme pop-up menu.

The run destination
 is the one that will determine where your app will run after it has been built. For macOS apps, one default destination called My Mac exists. For iOS, tvOS, and watchOS apps, you can choose a device connected to your Mac, a simulated device, or a wireless device paired to Xcode.

[image:]

	
Build, run and debug your app by clicking on the Run button in the toolbar.

The “View activity” area in the toolbar displays the progress and result of your app building. If the app building has not been successful, you will see “Failed” bolded in the “View activity” area.

[image:]

On the other hand, if your app building has been successful, your app will open on the simulator or on the device and a debugging session will be opened in the debug area.

	
If you get a warning message or an error, tap on the corresponding red or yellow icon in the “View activity” area.

The issue shows in the Issue navigator displaying the line of code where the error or warning occurred. (The Behavior preferences can be used to customize the behavior of some alerts.)

	
There is a stop button in the toolbar that you can use to stop a build process or to put a stop to the debugging session.

	
If the app building is successful and the app launches, the debug area can be used to control and inspect your running application.

You can only use a real device or a generic device as the run destination to create an archive for distribution. You will not be able to create an archive with simulator SDKs.

You can rebuild all the files in a project by choosing “Product,” select “Clean Build Folder,” and then choose Product > Run or Product > Build For > Running.

Run an app on a simulated device (iOS, tvOS, watchOS)

For iOS, tvOS, and watchOS apps, your app can be run and tested comfortably with a simulator—a simulator is a developer tool built with Xcode that simulates devices.

	
From the scheme pop-up menu in the toolbar, select a scheme and a device family under [Platform] Simulators.

Optionally, you can configure your desired device family by clicking on the “Add Additional Simulators.”

[image:]

If you are building apps for watchOS, select the WatchKit App target as a scheme, and select an Apple Watch simulator.

[image:]

	
Tap on the Run button in the toolbar.

If the app has been built successfully, the Simulator will open and run your app in the simulated device. For watchOS apps that need an iOS app to function, you will see the Apple Watch and the iOS simulator.

Alternatively, your apps can be run on real devices connected to your Mac or on a wireless device paired with Xcode.

Run an app on a device

All iOS apps, tvOS apps, and watchOS apps need to be code signed using a provisioning profile (A provisioning profile
 is a system profile that can be used to launch one or more apps on devices and use certain services.) to launch on a device. macOS apps that utilize certain app services need to be signed to launch on your Mac too.

If you activate automatic signing (recommended) – (Automatic signing
 is a target setting that enables Xcode to manage signing assets for you. The signing settings are found in the General pane under the heading signing in the project editor. To activate automatic signing, choose “Automatically manage signing.”), Xcode will create the necessary signing assets for you in your developer account. If the team belongs to a developer program, you will be required to explicitly register the device before you will be able to run the app. For macOS apps, you register the Mac running Xcode.

Before you continue, add your Apple ID account and assign the target to a team. Multiple ID accounts can be added and the account can belong to multiple teams. If you have not added your Apple ID, follow the steps below to do so;

	
Tap on the Add button (+) located in the lower-left corner.

	
A page will be displayed where you can choose Apple ID. Click on “Continue.”

	
You will get another page where you can input your Apple ID, tap “Next” and you will be able to enter your Apple ID password on the next page. When you are done, tap “Next.”

If the registration is successful, your Apple ID will be shown in the column on the left and the teams that the Apple ID belongs to will appear on the right. The table displays the team name and your program role. If you have not yet joined the Apple Developer program, your team name will be your first name and last name and the name “Personal Team” will be enclosed in front of your name. Refer to the previous chapters on how to join and register for the Apple Developer program.

On macOS 10.11 and later, if you have previously enabled the two-step verification for your Apple ID, you may be required to enter an additional verification code. On earlier operating systems, you may be required to input an app-specific password.

	
Tap on the “Create Apple ID” in the lower-left corner of the page if you don’t have an Apple ID. Once an ID has been created for you, repeat these steps to add your Apple ID.

Follow the steps below to run an app on a device;

	
For iOS, tvOS, and watchOS apps, connect the device to your Mac. For watchOS apps that are dependent on an iOS app, connect an iPhone that is paired with an Apple Watch.

You may have to actually wait for the Xcode to enable the device before it shows in the scheme menu for the next step. For iOS and watchOS apps, unlock your device’s screen and trust the computer.

	
Select a scheme and your device under the Device section from the scheme pop-up menu in the toolbar.

For watchOS apps, select the WatchKit App target as your scheme and the Apple Watch as your run destination. For watchOS apps that depend on an iOS app, both the name of the Apple Watch and iPhone will appear in the menu.

For macOS apps (including a Mac version of an iPad app), select My Mac as the run destination. For the iPad version, choose an iPad device under Device.

	
If the device shows under Unavailable Device in the scheme menu, move the mouse over the device, check the reason for this, and fix the problem.

For instance, if the operating system version is lower than the deployment target, improve the operating system version on the device by upgrading the OS, or better still, you can change the deployment target in your project.

	
In the project editor, tap on “Signing & Capabilities,” display the Signing settings and then tap “Register Device(s)” under Status.

The “Register device” button will not show if you had previously registered your device.

	
In the toolbar, tap on the Run button.

If the product builds successfully, Xcode will install and launch your app on the device.

Run UI tests and unit tests

You will be able to check the behavior and performance of your code by running UI test and Unit test using the Test navigator.

Note:
 If you had previously converted your scheme to use test plans, you need to first choose the test plan from the Test Plan pop-up menu and then follow the steps below;

[image:]

Run all tests in a scheme or test plan:
 Click on “Product,” and then tap on “Test.” You can alternatively click and hold on the Run button in the toolbar and then choose Test.

Run all tests for a test target or test class:
 In the Test navigator, place your mouse pointer over any test class or test target and then tap on the run button that will show.

Run an individual test:
 Place your mouse pointer over any test icon or status icon and then tap on the run button that shows.

View the source code for a test:
 Choose a test in the Test navigator to access its code in the source editor.

Alternatively, you can decide to run tests from the source editor. Move your mouse over a diamond icon that shows in the gutter next to a test class or a test method and then tap on the run button that appears.

Add a test class to a project

You can expand the scope of testing in a project with new methods by adding a test class.

	
Click on the Add button (+) located at the bottom of the Test navigator.

	
Select “New UI Test Class” or “New Unit Test Class” from the pop-up menu.

	
Input the class’s name inside the class field.

	
Select a superclass from the “Subclass of” pop-up menu. Classes are, by default, subclasses of XCTestCase.

	
Tap on the language pop-up menu to select a programming language.

[image:]

	
Tap on the Next button.

	
Choose a group, destination and test target.

	
Tap on the “Create button.”

A new class will be added to the target and will show in the Test navigator. The new class contains templates for teardown, setUp, testExample, and testPerformanceExample methods.

[image:]

	
Select the new class in the navigator and enter the test code in the source editor.

Add a test target to a project

You can expand the scope of testing in a project with new methods by adding a test target.

	
Click on the Add button (+) located at the bottom of the Test navigator.

	
Select “New UI Test Target” or “New Unit Test Target” from the pop-up menu.

	
Write a name for the target inside the Project Name field.

	
Select an implementation language from the Language pop-up menu.

	
If you have many projects in your workspace, select a project from the Project pop-up menu. The test target will be created in the project you specify here.

	
From the “Target to be Tested” pop-up menu, select a target to run tests on. This can be any target contained by the project except a test target.

	
Activate any additional options, such as organization name, your team and bundle identifier.

	
Tap on the Finish button.

A new test target with a new class will be added to the project and will show in the Test navigator. The new class contains templates for teardown, setUp, testExample, and testPerformanceExample methods.

	
Choose the new class in the navigator and input the test code in the source editor.

View UI test and unit test reports

The report of your Unit test and UI test run directly in the main window can be accessed. You can add attachments to the report and control the structure of the reports by using the XCTest framework.

	
In the Project navigator, choose a test source code file to launch it in the source editor.

	
In the source editor, Control-Click on a test status icon in the gutter, then select “Jump to Report” from the pop-up menu.

The test report will be displayed in the editor area on the right.

	
You can reveal an activity or test by clicking on the disclosure triangle.

Utilize the XCTest activities APIs to group subtasks.

	
To view a screenshot, launch the assistant editor and choose the screenshot attachment in the report.

Utilize the XCTest screenshot APIs
 to add screenshots to the report.

Creating and distributing a watch-only app

Most Apple Watch’s apps need a companion iOS app to work; that is Watch users must find a way to connect their iPhone to their Watch for full functioning. Nonetheless, you will still be able to create a watch-only app with no companion app and then offer such an app for sale on the App store on Apple Watch. Watch-only applications are also made available on the iOS App store.

Step 1: Create a watch-only app project

Choose the Watch App template under the watchOS platform when you are creating your Xcode project. You will get a page where you will have the option to include complication or a notification screen.

Your project will contain a [Project Name] target that has project settings but no files. The embedded WatchKit extension target and WatchKit extension apps must have the same bundle ID prefix as the [Project Name] target.

Step 2: Run the watch-only app from Xcode

From the scheme menu in the toolbar, select a real device or an Apple Watch simulator. Since you have created a watch-only app project, you won’t see iOS simulators and devices in this menu. Tap the run button
 once you choose a simulator, the Apple Watch simulator will open without a companion iOS app.

Step 3: Distribute and test the watch-only app

You can use Testflight to distribute a beta build version of your watch app or distribute the app to registered devices. Once you create the archive, choose the archive in the Archives organizer and in the inspector, view details about the archive. Since you built a Watch-only app (with no iOS companion), the watchOS state will be “iOS app will be thinned.” For a watchOS app that has a companion iOS app, the WatchOS state will either be “iOS app is required” or “iOS app is optional.”

Step 4: Distribute the watch-only app through the App Store

Since what you have built is of great quality, the next thing (if you want) is to distribute your product through the App store. Go to “Add WatchOS app information”
 in the App Store Connect Help to create a watch-only app record. In the last page when you are uploading the product to App Store Connect, you will be able to review the targets. For watch-only apps, the targets are: [Project Name], [Project Name] WatchKit App, and [Project Name] WatchKit Extension.

If you select Ad Hoc, Enterprise, or Development as your distribution method
 , you can select an Apple Watch device variant as the distribution option
 .

Support running a watchOS app without an iOS app

For projects you created using the “iOS App with Watch App” template, support can be added for running the WatchOS app without the iOS companion app. To make sure that your app runs independently of the iOS companion app, go to Creating Independent WatchOS apps.

This feature has been enabled by default in Xcode 11 and Xcode 12.

	
In the project editor, select the [Project Name] WatchKit Extension target and then tap on General.

	
Under Deployment Info, check the “Supports Running Without iOS App Installation” box.

CHAPTER ELEVEN

LOCALIZING YOUR APPS

Localization
 is the steps involved in making your apps adaptable to many languages. In App Store Connect, you will be able to select territories
 where you want your apps to be available on the App store. To select territories
 where you want your apps to be available on the App store, follow the steps below;

Note:
 All countries of the world are selected here by default, but you can deselect countries where you don’t want your apps for sale.

	
Select your app from “My Apps,” A page will be launched under the “App store”
 tab as shown below.

	
Tap on “Pricing and Availability”
 from the sidebar. You need to set pricing for your app before you will be able to select countries where you want your app to be available.

	
Tap “Edit”
 under Availability.

	
You will get a dialog where you can choose the regions or countries where you want your product to be available in;

●

 Select all countries or regions:
 Select All.

●

 Choose specific countries or regions:
 Click on the checkbox next to the regions or countries that you want to include and then un-select the checkbox next to the countries or regions you don’t plan to add.

●

 Automatically add new App Store regions or countries:
 Select the New Countries or Regions checkbox that you see in the upper-left corner.

Tap on “Done” located at the end of the dialog and then select “Save” from the upper-right end.

Once you have successfully added territories to your app, the app can also be localized in XCode to enable users utilize the app in their respective local language, culture and region.

To prepare the application for proper localization, you will have to add the languages that you intend to support first. Use the below steps as guides to add languages to your app;

Adding languages supported by apps in the App Store

	
Choose the project in the project navigator, and then tap on “Info.”

	
Under Localizations, click on the Add button (+) and then pick a language from the displayed pop-up menu.

The displayed pop-up menu features the language name with the language ID in parenthesis—for instance, Japanese (ja), German (de), and Arabic (ar). For dialects or scripts, the region will appear in parenthesis—for instance, German (Switzerland). The Other submenu (located at the lower end of the menu) has more regions and languages.

[image:]

	
In the screen that shows, deselect the resource files that you don’t plan to localize for this language, and then select Finish.

Once a language has been added successfully, you can proceed to mark the resources
 that you wish to vary for this language.

Make a resource localizable

Any type of resources can actually be localized, including audio files and images. For instance, an image that is culturally sensitive for a particular region or language can be added. Proceed with below steps;

	
Choose the resource in the Project navigator.

	
Select “Localize”
 in the inspector under Localization.

[image:]

	
You will get a dialog box where the development language for the resources can be selected. Click “Localize.”

	
In the inspector, under Localization, choose the languages that you desire for the resource to be localized in.

Once you have been able to localize your resources, you can then export localizations
 for those languages that you want to support and give the language-specific Xcode Localization Catalog (xcloc) folders to localizers
 .

Export localization

	
In the Project navigator, select the project and then select Editor and tap on Export For Localization.

	
You will be shown an export dialog where you will input a suitable name for the folder, choose a location, and select the languages you plan to add under Localizations and then tap “Save.”

You can continue building your app in the base language and lock views
 optionally while you await localization, and you can then import localization (
 which is the xcloc folders that have actually been translated).

Proceed with the below steps to lock views;

Lock a single view

	
Choose a user interface file in the Project navigator.

	
Choose the view in the Interface Builder.

	
In the Identity inspector, choose a locking level from the pop-up menu under Document.

●

 Inherited - [(locking level)]:
 Utilize the locking level of the parent view.

●

 Nothing:
 Don’t lock any property. All the properties will be editable.

●

 All Properties:
 Lock all properties.

●

 Localizable Properties:
 Lock localizable properties, like user-facing text and size.

●

 Non-localizable Properties:
 Lock non-localizable properties (make user-facing text and size properties editable).

[image:]

Ensure that your app is duly tested in all of the language that you have approved. After you have successfully imported localizations, you can then test your app in the regions and the languages you have included.

CHAPTER TWELVE

GETTING YOUR APPS TO THE STORE

App thinning (For iOS, tvOS and watchOS)

All of the apps that are submitted to the app have been tailored – with minimal footprint - to the capability of the users’ devices and their devices’ operating system. This is the guiding principle with which the App Store and operating system optimize the installation of iOS, watchOS and tvOS apps. This selective optimization, called app thinning
 , gives users the chance of creating apps that use almost all of the features of the device hosting them, accommodate any future updates that can be done to the app and also occupy lower disc space on the device. Better user experience is achievable with faster app download and creation of more disc spaces for other contents and apps. It is not good if an iOS app takes all of the disc space on users’ iPhone to install.

Slicing (for iOS, tvOS)

Slicing
 is the act of building and delivering different forms of the app bundle for different operating system versions and target devices. A variant
 of an app features only the resources and executable architecture that are essential for the target operating system version and device. As time goes on, you can always update and provide a full model of your application on the App store. Different variants of the apps you sent to the Store will be created and delivered by the App Store based on the operating system version and the devices supported by your app. The assets catalogs can be used to allow the App store choose images, GPU resources and other data appropriate for each variant. When an app is installed by the user, the precise app variant that will be supported by the user’s device and operating system will be downloaded and installed for the user without the user having to worry about anything.

During app building, Xcode simulates slicing for you so that you can locally create and test different app variants. Xcode helps to automatically slice your app when you make and run your app on a real device or in a simulator. When you create an archive, the full version of your app will be included in the Xcode, and various versions of your apps can be exported from the archive.

Note:
 Only devices running iOS and tvOS 9.0 and later will support sliced apps. For users whose operating system is not OS 9.0 and above, the App store will bring universal variants for them. Universal variants are also delivered through apps bought in volume through the Apple School Manager or Apple Business Manager, Mobile Device Management (MDM), or apps downloaded by using iTunes 12.6 or earlier.

Bitcode

Bitcode
 is just an intermediate rendition of a compiled program. Apps that you have put on App Store Connect that contain bitcode will be compiled and linked on the App Store. When you include bitcode, your app binary (a file that contains machine codes which are executable by the computer) can be re-optimized by Apple in the future without necessarily uploading a fresh version of that app to the App store.

Bitcode is the default for iOS apps, though optional. For apps that run on watchOS and tvOS, bitcode is very much required.

To prevent Apple from accessing your App’s symbols, Xcode usually hides your app’s symbols by default. You have the chance of including app symbols when you submit an app to the App Store Connect. Including symbols will enable Apple to give crash reports for your app when the app is distributed with TestFlight or with the App store. You don’t have to upload app symbols if you are planning to collect crash reports by yourself. All that you have to do is to download the bitcode compilation dSYM files once you have successfully distributed your app.

On-Demand Resources (iOS, tvOS)

On-demand resources
 are resources—like sounds and images—that you can tag with keywords and request in groups, by tag. These resources are hosted on Apple server by the App store which also manages the download for you. The App Store also slices on-demand resources, further optimizing variants of the app.

On-demand resources help provide a topnotch user experience:

●

 Apps downloading become especially faster since apps sizes are now smaller. This improves user experience.

●

 On-demand resources will be downloaded in the background, when needed, while the users still continue to explore your app.

●

 The operating system removes on-demand resources when they are no longer needed and when devices’ disk space is low.

For instance, an app may split resources into levels and asks for the next level of resources only when it anticipates that the user will move to that level. Similarly, the app can request In-App Purchase resources only when the user makes the corresponding in-app purchase.

Note:
 You will need to host the on-demand resources by yourself if you distribute your app to registered devices (outside of the App Store).

Distribute an app through the App Store

The processes involved in getting your apps to the end-users are not exactly tedious and mind-boggling. Your apps must be tested and monitored on real and simulated devices in the Xcode before you ever think of distributing them through the App store. The apps that are worthy to be on the App store are apps of good quality and they must be user friendly.

If you distribute your app using TestFlight, you need to carry out some of the below steps before you can finally distribute the final product. Once the steps have been completed, the app will be uploaded to App Store Connect.

Step 1: Prepare your app for submission

Navigate to “App Review” to review the guidelines concerning App Store and human interface. The procedures you need to follow to prepare your watchOS apps for submission have been discussed previously. For instance, an app store icon must be provided. In case you have not included an app store icon, you will be required to add an app icon to your iOS apps by dragging an app icon to the App store iOS well found in the AppIcon image set.

Step 2: Enter additional details in the App Store Connect

You may have to input additional detail in the App Store Connect before you can get to submit your app to App Review. Be careful with the settings you choose here because you won’t be able to edit them once your app has been submitted or released. For instance, you cannot edit the name of the app, subtitle of app, private policy URL etc once your app has been uploaded.

Step 3: Archive, validate, and upload your app

In case you could not distribute your app using TestFlight, prepare your app for distribution and create an archive of your app now, you can validate the archive and fix some validation errors – if any- before you continue. Then upload the app to the App Store Connect and exercise a little patience for the app to pass App Store Connect validation tests.

Step 4: Submit your app to App Review

To submit the build to App Review, see the “Publish your app in App Store Connect” below;

Publishing your app in the App store:
 Proceed with the guides below to see how you can publish your app in the App store;

Choose your build

Each app has multiple models, and each app model may have more than one builds. Select which app build you wish to submit when publishing your app on the App store. Proceed with the guides below to select a build;

	
Scroll to “My Apps,” and select your app. The page launches under the App Store tab.

	
In the sidebar, click on the app version under the platform you decided to select.

	
On the right, move down to the Build section and then tap on the (+) sign (add button) beside “Build.”

	
The Add Build dialog will appear where you can get to select the build that you wish to submit.

	
Tap Done.

You will see the app icon, date & time of upload and the build string in the Build section.

[image:]

	
Tap “Save”
 in the upper-right end of your screen.

Set pricing and availability

Setting price and availability for your app is among the core things you will have to do once your app has been built successfully. You will need to set a price for your app and choose territories where the app should be available for people to buy (choosing app territories has been explained previously). If you fail to choose territories for the apps, the apps, by default, will be made available in all regions. Your app can also be published as a preorder. Proceed with guides below to fix an appropriate price for your product;

	
Scroll to “My Apps,” and choose your app. The page launches under the App Store tab.

	
Tap on “Pricing and Availability”
 in the sidebar. You will see the price schedule (displaying the price) on the right.

	
From the price column, choose a price group from the pop-up.

Submit your app for review

To get your app available for review on the App store, you must submit the app for necessary review. The App review process entails reviewing an app submitted to the App store to ensure the app is reliable and is able to pass all required tests. Follow these steps to submit your app for review;

Submit the app

	
Scroll to “My Apps,” and choose your app. The page launches under the App Store tab. .

	
From the sidebar, choose the exact version of the app that you wish to submit for appropriate review.

	
On the right, move down to the Build section to verify that the correct build version for the app has been set.

	
You will receive a Version Release section where you will have the chance to select a release option. You can pick from any of these;

●

 Release the app yourself:
 Choose “Manually release this version.”

●

 Automatically release the app after approval:
 Tap “Automatically release this version.”

●

 Automatic release the app but no earlier than a specified date:
 Select “Automatically release this version after App Review, no earlier than” and input the appropriate date and time below the option.

While releasing your application as a first timer on the App store, you can decide to publish the app as a preorder. Publishing your app as a preorder will remove other release options automatically.

Under the “Phased Release for Automatic Updates” section, you can choose to release app updates in phases if you are submitting a version update.

Under the “Reset Summary Rating” section, you can opt to reset summary rating if you are releasing a version update.

Click on the “Submit for Review”
 in the upper-right end.

If required, attend to the export compliance questions and then upload encryption authorization documents. In the United States, all apps are loaded on Apple servers and the apps are subjected to the United States export laws.

Attend to all the questions on Content Rights. If your app has third-party content, you need to confirm that you have the permission to utilize the third-party content in each territory in which your app is made available. It is your duty to determine and abide by the applicable regulations in each territory.

Provide the details about advertising identifiers in the displayed dialog.

Click on “Submit.”

Monitor your app status and attend to review issues

Once the app has been successfully submitted for review, its status will change to “Waiting for review”. If your app has some issues, you will have to check and then give an appropriate reply to the communication. It can take your app about 24hours to be fully available on the App store after approval.

Request promo codes

Once your app has been approved successfully, you can request promo codes to give to users before you finally make your app available on the App Store. The users will be able to use the promo code when they want to buy your app. The promo code can usually allow them to buy your product at a discounted price. The promo code can be shared to the users by email.

ABOUT AUTHOR

Gary Elmer
 is a programming expert with passion for what he knows how to do best. He has written a lot of beginner and technical guides on programming languages, and will not stop teaching programming until the baby in the womb can have an understanding of it.

Gary read computer science and engineering from the University of Minnesota, USA. Currently, he is undergoing a Masters of Business administration program.

OEBPS/Image00098.jpg
|Debug bar

Sl ®» > o L 2| $o B MyuUIKitApp) () Thread 1) FY 0 ViewController.viewDidLoad!()

v [self = (MyUIKitApp.ViewController) 0x00007f8de0d04d00 (11db) p accessibilityFrame
¥ UIKit.UIViewController (UIViewController) (CGRect) $RO = (origin = (x = @, y = @), size

> baseUIResponder@0 (UiResponder) (115 (i”ldth = @, height = 0))
» _overrideTransitioningDelegate = (id) Ox0
» _view = (UIView *) 0x7f8de0d0Occ00
» _tabBaritem = (id) 0x0
» _navigationitem = (id) Ox0
» _toolbaritems = (id) 0x0
> _title = (id) 0x0

bName = (_NSCFString *) "BYZ-38-t0r-view-8bC-Xf-...

Auto ¢ (S) All Output & S) A7 O |

Variables view Console

OEBPS/Image00097.jpg
Run your app.
Set a breakpoint.

Disable a breakpoint.
[XON 1 2 B A|) ®@ | Running HelloWorld on iPhone 11 Pro Max S
BHNR QA B |48 < > B Helloworld) i HelloWorld) s ViewController.swift) (I) sayHello(_:)
v (] Helloworld PID 2775 @ D) 7
8
(@) cru h% 9 import UIKit
10
8 Memory 0118 | | 41 class ViewController: UIViewController {
B pisk zeroklys |I| © @1BOutlet weak var label: UILabel!
3
® Network ZeroKfys 10 override func viewdidLoad() {
super.viewDidLoad()
¥ O Thread 1 Queue: c..d (seifal 16 // Do any additional setup after loading the view.
Y0 ViewControllersayHefl.. | 1,)
[17 vlApplicationMain 18
Y18 main 19 //Action method for the button
Qe (O] @IBAction func sayHello(_ sender: Any) {
start
label.text = "Hello There" = Thread 1: breakpoint 11
[20 start 2)
> () Thread 2 Queue:...or (serial) 2}
» (D) com.apple.uikit.eventfetch... 2%
E ®» 0> & & 2|0 S @ < | Heloword) () Thread 1) Y 0 ViewController.sayHello(_:)
» [sender = (UiButton) 0x000079b70d079e0 (11db) po label
v [self = (Helloworld.ViewController) 0x00007{9b70f07€00 v 09t10"51<U5;:b:1; ox7fob7360490; (160
- some : <UILabel: Ox ; frame =
» UIKit.UIViewController (UViewController) 424; 9% 48); text = 'Label’; opague = NOF
P label = (UlLabel?) 0x00007f9b736049f0 autoresize = RM+BM; userInteractionEnabled
= NO; layer = <_UILabellayer:
0x6000002d3250>>
(11db) |
© L Auto 0 ® L A output 3 ® 1 | D0,

Navigate the stack. View variables in the current scope. View output and enter commands.

OEBPS/Image00100.jpg
Set a breakpoint.
Run the app.

®©® » W AH.d) @ iPhone6s Running HelloWorld on iPhone 6s an
18 < > [Helloworld) [HelloWorld) 3 ViewController.swift) No Selection

import UIKit

class ViewController: UIViewController {
@IBOutlet weak var label: UILabell

override func viewdidLoad() {

super .viewdidLoad()

/1 Do any additional setup after loading the view, typically from a nib.
}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning ()
/1 Dispose of any resources that can be recreated.
¥

@IBAction func sayHello(_ sender: AnyObject) {
label.text = “Hello, do you like my hat?"
}

der = (UlButton *) 0x00007ff5d725608
loWorld.ViewContr 00007fec156104b:
» UIKit.UIViewController (UiViewController)
¥ label = (UlLabel}) 0x00007fec1340c430
» baseUIView@0 (UIView)
» _highlightedColor = (id) 0x0
_numberofLines = (long long) 1
_measuredNumberOfLines = (long long) 0
_lastLineBaseline = (double) 16
_previousBaselineOffsetFromBottom = (double) 5
firstLinel (double) 16
_previousFirstLineBaseline = (doublc) 16
_minimumScaleFactor = (double) O

fputo & | @ ©

Print Description.
Open Quick Look.

Choose a scope option.

Open the variable structure.

=2 ®

<a>

‘Thread 1: breakpoint 1.1

> & & 2@ % < | Heloworid) () Thread 1) I 0 ViewController.sayHello(AnyObject) -> ()

@ Filter oo

Filter the results.

Open the variables view.

OEBPS/Image00099.jpg
W A H.d) @8 iPhone 6s

Running HelloWorld on iPhone

‘... >

89 < > [& Helloworld) [HelloWorld) s ViewController.swift) No Selection

View source or assembly code.

s o @

import urkit

class ViewController: UIViewController {
@IBOutlet weak var label: UILabel!

override func viewDidLoad() {
super.viewdidLoad()

‘Thread 1: breakpoint 2.1 —

/1 Do any additional setup after loading the view, typically from a nib.

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()

/1 Dispose of any resources that can be recreated.
BN

B ® > & & 1|0 & |Helowoy @ Thread?
[HelloWorid.ViewController) 0x00007ff932¢09cc0 @ Thread 2
iewController (UiViewController) (@ Thread 3

UiLabel!) 0x00007f932408f10
IView@0 (UIView)

Il) Thread 4
(@ Thread 5

@ Thread 8

(D com.apple.uikit.eventfetch-thread (6)

> 10

= |5

>

> [] 0 kevent_gos

» © 1_dispatch_mgr_wait_for_event
» =] 2 _dispatch_mgr_invoke

»> 2] 3 _dispatch_mgr_thread

> _confent = (NSTaggedPointerString *) 0xa00006c6562614c5

Auto &

Pause or play execution.

@ Filter oo

Choose a thread.

OEBPS/Image00102.jpg
4294986704 3A 38 40 31 36 40 32 34 40 33 32 00 76 34 30 40 30 0:8016024@32.v4000
4294986722 38 40 22 4E 53 41 70 70 6C 69 63 61 74 69 6F 6E 22 :8Q@"NSApplication”
4294986740 36 40 22 4E 53 53 74 72 69 6E 67 22 32 34 40 22 4E 16@"NSString"24@"N
4294986758 45 72 72 6F 72 22 33 32 00 76 33 32 40 30 3A 38 40 SError"32.v3200:8@Q
4294986776 4E 53 41 70 70 6C 69 63 61 74 69 6F 6E 22 31 36 40 “"NSApplication"16@
4294986794 4E 53 55 73 65 72 41 63 74 69 76 69 74 79 22 32 34 “"NSUserActivity"24
4294986812 76 33 32 40 30 3A 38 4@ 22 4E 53 41 70 7@ 6C 69 63 .v32@0:8@"NSApplic
4294986830 74 69 6F 6E 22 31 36 40 22 43 4B 53 68 61 72 65 4D ation"16R"CKShareM
4294986848 74 61 64 61 74 61 22 32 34 00 76 32 34 40 30 3A 38 etadata"24.v24(0:8
4294986866 31 36 00 76 32 34 40 30 3A 38 40 22 4E 53 4E 6F 74 (16.v24Q0:8Q"NSNot
4294986884 66 69 63 61 74 69 6F 6E 22 31 36 00 23 31 36 40 30 ification"16.#16Q0
4294986902 38 00 40 31 36 40 30 3A 38 00 40 32 34 40 30 3A 38 .016(0:8.02400:8
4294986920 31 36 00 40 33 32 40 30 3A 38 3A 31 36 40 32 34 00 :16.03200:8:16024.
4294986938 34 30 40 30 3A 38 3A 31 36 40 32 34 40 33 32 00 63 (40@0:8:16@24@32.c
4294986956 36 40 30 3A 38 00 63 32 34 40 30 3A 38 23 31 36 00 16(0:8.c24(0:8#16
4294986974 32 34 40 30 3A 38 40 22 50 72 6F 74 6F 63 6F 6C 22 c24@0:8QR"Protocol"
4294986992 36 00 63 32 34 40 30 3A 38 3A 31 36 00 56 76 31 36 16.c2400:8:16.Vv16
4294987010 30 3A 38 00 51 31 36 40 30 3A 38 00 5E 7B 5F 4E 53 (0:8.Q16@0:8."{_NS
4294987028 6F 6E 65 3D 7D 31 36 40 30 3A 38 00 40 22 4E 53 53 Zone=}16(0:8.QR"NSS
4294987046 72 69 6E 67 22 31 36 40 30 3A 38 00 76 31 36 40 30 tring"16(0:8.v16C0
4294987064 38 00 40 22 4E 53 57 69 6E 64 6F 77 22 00 40 22 53 :8.Q"NSWindow".Q"S
4294987082 4E 4E 6F 64 65 22 00 63 00 4@ 22 53 43 4E 56 69 65 CNNode".c.@"SCNVie
4294987100 22 00 68 61 73 68 @@ 54 51 2C 52 @@ 73 75 7@ 65 72 w".hash.TQ,R.super
4294987118 6C 61 73 73 @0 54 23 2C 52 0@ 64 65 73 63 72 69 70 class.T#,R.descrip
4294987136 69 6F 6E 00 54 40 22 4E 53 53 74 72 69 6E 67 22 2C tion.T@"NSString",
4294987154 2C 43 00 64 65 62 75 67 44 65 73 63 72 69 70 74 69 R,C.debugDescripti
4294987172 6E @0 77 69 6E 64 6F 77 00 54 40 22 4E 53 57 69 6E on.window.T@"NSWin
4294987190 6F 77 22 2C 57 2C 56 5F 77 69 6E 64 6F 77 00 48 65 dow",W,V_window.He
4294987208 1lo!.cha

Address | 0x100004bd0 Page (> lock @ = .mberofBytes

Memory addresses Go to address Lock view Number of bytes
or variable

Previous / next page of memory

OEBPS/Image00101.jpg
Set Summary Format for type [NSString * 2)

Example: "{(NSString *)[$VAR description]}:s"
@ Summary format is valid

OEBPS/Image00103.jpg

OEBPS/Image00018.jpg
oo e o e

do {

try canThrowanError()

/1 no error was thrown
} cateh {

/1 an error was thrown

1

OEBPS/Image00019.jpg
1. let age = -3
2. assert(age >= 0, "A person's age can't be less than zero.")

3. // This assertion fails because -3 is not >= 0.

OEBPS/Image00016.jpg
var index: Int?

if index

nil {

// index variable has a value assigned to it
} else {

// index variable has no value assigned to it

OEBPS/Image00017.jpg
1. func canThrowhnError() throws {
2. // this function may or may not throw an error

2%

OEBPS/Image00014.jpg
1. let httpd0dError = (404, "Not Found™)

2. // httpdOdError is of type (Int, String), and equals (404, "Not

OEBPS/Image00094.jpg
v b Hellowore
= Appoelagste st
= ViewGontolrswit
. Mainstoybord
0 Assets xeassets
. Launchscreonstrybosrd
ntopist
v b HolloworaTests
= HollaworaTests it
nfopiat
v b Holloworaurests
= HolloworidurTests.wit
ntopist
> i products

+[@® OH -

OEBPS/Image00015.jpg
varindex: Int?

OEBPS/Image00096.jpg

OEBPS/Image00095.jpg

OEBPS/Image00022.jpg
Lletx=8
2vary=5
3.x=y

4.//xisnow equal to 8

OEBPS/Image00023.jpg
Llet (2, b) =(1, 2)
2.//ais equal to 1, and b is equal to 2

OEBPS/Image00020.jpg
bl A O I o o o

if age > 10 {
print("You can ride the roller-coaster or the ferris wheel.”)

} else if age >= 0 {

print("You can ride the ferris wheel
} else {
assertionFailure ("A person's age can't be less than zero.")

}

OEBPS/Image00021.jpg
1. // In the implementation of a subscript...

2. precondition(index > 0, "Index must be greater than zero

OEBPS/Image00001.jpg
Programming iOS 14 Using

SWIFI Ul

Get Started With Building iOS 14 With
Swift 5 and Xcode

Gary Elmer

OEBPS/Image00003.jpg
1.

var x = 0.0,

v

0.0,

OEBPS/Image00002.jpg
- let maximumNMumberofLoginAttempts = 10

- var currentloginAttempt = 0

OEBPS/Image00109.jpg
Do you want to move “CustomView.storyboard” to the Trash, or
only remove the reference to it?

OEBPS/Image00108.jpg
Destination: Copy items if needed

Added folders: Create groups
© Create folder references

Add to targets: # HelloWorld
HelloWorldTests
HelloWorldUITests

New Folder Options

Cancel

Add

OEBPS/Image00111.jpg
Select a template.

Select a platform.

ly | Today at

Choose a template for your new playground:

13 PM

{}

tOS macOS

N

Game Map Single View
Cancel Previous

OEBPS/Image00110.jpg
Edit playground code.

LICK Ready | Today at 1:52 PM

Progress indicator

View results.

lOpen the live view.

0B <

fe8 < > [3) MyPlayground

1 limport UIKit
2

— () var str = "Hello, playground"
4

= >

Run the entire code listing.

Run code from this point.

Hello, playground

]

OEBPS/Image00113.jpg
A page's source files

The playground's source files

o0 e Rpady|| Today at 3:31 PM

OBl <

BEZAQAP

¥ [MyPlayground
¥) Get Started Page

> Sources
> Resources

» 4 Lesson 1

v [8) Sources

B New File.swift

> Resources.

+ (@ Filter oOH | =@

B <>

1
2
3

import Foundation

3] MyPlayground) [Sources) » New File.swift) No Selection

OEBPS/Image00112.jpg
Rendered markup

Ready | Today at 1:54 PM

OBl <

B

> 4 Lesson 1
» [8) Sources.
v [Resources.

+ | @ Filter

2QAAO

v B MyPlayground

o B B8 < > |3 MyPlayground) s Lesson 1

Some Animals

* Cat
* Dog
¢ Llama

import UIKit

N

8

9
(® var str = "Hello, playground"
1

OH & >

OEBPS/Image00007.jpg
1. print("The current value of friendlyWelcome is \(friendlyWelcome)")

2. // Prints "The current value of fricndlyWelcome is Greetings

OEBPS/Image00008.jpg
1. /* This is also a comment

2. but is written over miltiple lines. */

OEBPS/Image00005.jpg
1. var friendlyWelcome = "Hello!"
2. friendlyWelcome = "Greetings!"

3. // friendlyWelcome is now "Greetings!"

OEBPS/Image00093.jpg
B =2 Q A & = o @ |2 ¢ >|h

1 HelloSwift D

¥ [HelloSwift PROJECT
3 AppDelegate.swift B HelloSwift
elloSwi

3 ViewController.swift

OEBPS/Image00000.jpg
Programming iOS 14 Using

SWIFI Ul

Get Started With Building iOS 14 With
Swift 5 and Xcode

Gary Elmer

OEBPS/Image00006.jpg
1. let languageName = "Java'
2. languageName = "Java++”

3. // This is a compile-time crror: languageName cannot be changed.

OEBPS/Image00091.jpg
[NN W /A HelloSwift) (@ iPhone 6s Plus

B2 QAN © = o 8 B|B < > B

v oo

¥ "] HelloSwift
3 AppDelegate.swift

PROJECT
g HelloSwif

3 ViewController.swift

OEBPS/Image00105.jpg

OEBPS/Image00004.jpg
1. welcomeMessage = "Hello"

OEBPS/Image00092.jpg
® ©o > D /. HelloSwift) i iPhone 6s Plus

B = Q A & = o & og | < > | B

] <
¥ [HelloSwift

3 AppDelegate.swift

= ViewController.swift & HelloSwift

PROJECT

OEBPS/Image00104.jpg
|Open the project navigator.

B &= Q & ©

Helloworld Select a file to show it in the editor area.
v [Helloworld
3| AppDelegate.swift

v

3| ViewController.swift

Main.storyboard

[Assets.xcassets

LaunchScreen.storyboard

] Info.plist

v [7] HelloWorldTests
3| HelloWorldTests.swift
= Info.plist

v [7] HelloWorldUITests
3| HelloWorldUITests.swift
] Info.plist

» [Products

+ @ (O]

Search for a file. Show recently modified files.

OEBPS/Image00089.jpg
func dosomeHork() {

print("Getting started!")
defer {

print("ALl done!

i

print("Getting to work!")
¥
dosoeWork()

// Prints "Getting started!", "Getting to work!”, and "ALl done!", in that order

OEBPS/Image00107.jpg
Select a platform. Search for a template.

Choose a templatle for your new file:

ios watchOS ~ tvOS macOSl ®

Source

(C] (T 3 m

Cocoa Touch Ul Test Case Unit Test Case Swift File Objective-C File
Class Class Class

h iig Cc Cr AN
Header File IIG File C File C++ File Metal File

User Interface

R,

Storyboard

© ®

View Empty Launch Screen

Select a template. Add the selected template to your project.

OEBPS/Image00090.jpg
Sign in to Apple Developer

|Apple ID

Remember me

Forgot Apple ID or password?

Don't have an Apple ID? Create yours now.

OEBPS/Image00106.jpg

OEBPS/Image00013.jpg
1. let anotherPi =3 + 0.14159

2. // anotherPi is equally assumed to be of type Double

OEBPS/Image00011.jpg
1. let meaningOfLife = 60

2. // meaningOfLife is assumed to be of type Int

OEBPS/Image00012.jpg
1. let pi = 3.14159

2. // pi is inferred to be of type Double

OEBPS/Image00009.jpg
1. /* This is the start of the first multiline comment.
2. /* This is the second, nested multiline comment. */

3. This is the end of the first multiline comment. */

OEBPS/Image00010.jpg
let minvalue

UInt8.min // minvalue is equal to 8, and is of type UIntg

let maxvalue = UInt8.max // maxValue is equal to 255, and is of type UInt8

OEBPS/Image00087.jpg
var numbersSortedAgain = numbers.sort({
$1> $0
Y // =[1, 2, 13, 32, 56, 120]

OEBPS/Image00088.jpg
var numberssortedReversedAgain = numbers.sort {
50 > $1
3} // = [120, 56, 32, 13, 2, 1]

OEBPS/Image00085.jpg
var numbers = [2, 1, 56,32,120,13]
// Sort so that small numbers go before large numbers

var numbersSorted = numbers.sort ({
(nl: Int, n2: Int)
1)

// =11, 2, 13, 32, 56, 120]

-> Bool in return n2 > nl

OEBPS/Image00086.jpg
var nunbersSortedReverse = numbers.sort({n1, n2 in return n1 > n2})
// = [120, 56, 32, 13, 2, 1]

OEBPS/Image00084.jpg
var sortingInline = [2, 5, 98, 2, 13]
sortingInline.sort() // = [2, 2, 5, 13, 98]

OEBPS/Image00082.jpg
oow s ow o e

func addTuoInts(_

return a + b

¥

func multiplyTwoInts(_
return a * b

Int, _

b: Int) -> Int {

Int, _b: Int) -> Int {

OEBPS/Image00083.jpg
RSV

func printHathResult(_ mathFunction: (Int, Int) -> Int, _

print("Result: \(mathFunction(a, b))")
¥

printMathResult(addTuolnts, 3, 5)

/1 Prints "Result: 8"

Int,

_b:Int) {

OEBPS/Image00080.jpg
func suapTwoInts(_
let temporaryA
a=b

temporaryA

a

inout Int, _

: inout Int) {

OEBPS/Image00081.jpg
RSV

var someInt = 3

var anotherInt = 107

swapTwolnts(&somelnt, &anotherInt)

print("somelnt is now \(someInt), and anotherInt is now \(anotherInt)”
/1 Prints "someInt is now 167, and anotherInt is now 3

OEBPS/Image00078.jpg
woaw o

func someFunction(paraneteriithoutDefault: Int, parameteriithDefault: Int =
12) {
/1 TF you omit the second argument when calling this function, then
/1 the value of parameterWithDefault is 12 inside the function body.
¥
someFunction(parameteriithoutDefault: 3, parameteriithDefault: 6) //
parameteriithDefault is 6
someFunction(parameterkithoutDefault:

4) // parameteriithDefault is 12

OEBPS/Image00079.jpg
e N w s w o e

10
1

func arithmeticMean(_ numbers: Double...) -> Double {
var total: Double = @
for number in numbers {
total += number
¥
return total / Double(numbers.count)
¥
arithnetichean(1, 2, 3, 4, 5)
/1 returns 3.8, which is the arithmetic mean of these five numbers
arithnetichean(3, 8.25, 18.75)
/1 returns 10.0, which is the arithmetic mean of these three numbers

OEBPS/Image00076.jpg
RSV

func greet(person: String, from hometown: String) -> String {
return "Hello \(person)! Glad you could visit from \(hometown).”
E
print(greet(person: "Bill", from: "Cupertino”))
/1 Prints "Hello Bill! Glad you could visit from Cupertino.

OEBPS/Image00077.jpg
RSV

func someFunction(_ firstParameterName: Int, secondParameteriame: Int) {
/7 In the function body, firstParameterName and secondParameterName
/1 refer to the argument values for the first and second parameters.

¥

someFunction(1, secondparameteriame: 2)

OEBPS/Image00074.jpg
woa W e

func someFunction(firstParametertiame: Int, secondParameteriame: Int) {
/7 In the function body, firstParameteriame and secondParameterName
/1 refer to the argument values for the first and second parameters.
¥

someFunction(firstParameteriame:

1, secondparaneteriane: 2)

OEBPS/Image00075.jpg
Bowon e

func someFunction(argunentlabel parameterhame: Int) {
/7 In the function body, parameterName refers to the argument value
/1 for that parameter.

OEBPS/Image00073.jpg
class Tree <T> {
// 'T' can now be used as a type inside this class

// 'value' is of type T
var value : T

// 'children’ is an array of Tree objects that have
// the same type as this one
private (set) var children : [Tree <T>] = []

// We can initialize this object with a value of type T
init(valve @ T) {
self.value = value

}

OEBPS/Image00071.jpg
func + (left: Int, right: Int) -> Int {
return left + right
3

OEBPS/Image00072.jpg
class Vector2d {
var x : Float

: 0.0
var y : Float

0.0

init (x : Float, y: Float) {
self.x = x
self.y

OEBPS/Image00069.jpg
// Accessible to everyone
public var publicProperty = 123

OEBPS/Image00070.jpg
// only accessible in this source file
private var privateProperty = 123

OEBPS/Image00067.jpg
public class AccessControl {

¥

OEBPS/Image00068.jpg
// Accessible to this module only
// ‘internal’ here is the default and can be omitted
internal var internalProperty = 123

OEBPS/Image00065.jpg
extension Int {
var doubled : Int {
return self * 2
func multiplyWith(anotherNunber: Int) -> Int {
return self * anotherNumber

3

OEBPS/Image00142.jpg
Build

BUILD

. 2.31(8)

Build string

Version number

App Icon

UPLOAD DATE

Mar 24, 2020 at 4:28 PM

OEBPS/Image00066.jpg
extension Int : Blinking {
var isBlinking : Bool {
return false;

}

var blinkspeed : Double {
get {
return 0.0;

1
set {

// bo nothing
]

}

func startBlinking(blinkspeed : Double) {
print("I an the integer \(self). I do not blink.

1
¥
2.1sBlinking // = false
2.startBlinking(2.0) // prints "I an the integer 2. I do not blink."

OEBPS/Image00141.jpg
DhoeoE@E ¥ I O

Custom Class

Class ©

Module T

Inherit Module From Targ

Identity

Restoration ID

User Defined Runtime Attributes

Key Path Type Value
+ —
Document

Label

xBeJUeeee
Object ID PJK-rd-kBP
Lock | Inherited - (Nothing)

Localizer Hint

Accessil

ity

Accessibility Enabled
Label

Hint

Identifier

Hide

OEBPS/Image00064.jpg
var aBlinkingThing : Blinking
// can be ANY object that has the Blinking protocol

aBlinkingThing = TrafficLight()

aBlinkingThing. startBlinking(4.0) // prints "I am now blinking"
aBlinkingThing. blinkspeed // = 4.6

aBlinkingThing = Lighthouse()

OEBPS/Image00062.jpg
Blinking {
Bool = false

class Trafficlight
var isBlinkin

var blinkspeed : Double = 6.6

func startBlinking(blinkspeed : Double) {
print("I am a traffic light, and I am now blinking")
isBlinking = true

// We say "self.blinkspeed” here, as opposed to "blinkspeed”,
// to help the compiler tell the difference between the
// paraneter 'blinkspeed' and the property

OEBPS/Image00134.jpg
Configure editor area.

|Run app. lChoose scheme. |View activity. Open Iibrary.l

r T 1
0: all Ko A =RN=RNw]

@O ® P W A HeloWorld) B iPhone Xr | HelloWorld | Build HelloWorld: Failed | Today at 12:01 PM

o

|Stop app. Activity indicators Showr/hide areas.

OEBPS/Image00063.jpg
self.blinkspeed = blinkspeed

}

class Lighthouse : Blinking {
var isBlinking: Bool = false

var blinkspeed : Double = 0.6
func startBlinking(blinkspeed : Double) {
print("I an a lighthouse, and I an now blinking")

isBlinking = true

self.blinkspeed = blinkspeed

OEBPS/Image00060.jpg
class PropertyobserverExanple {
var number : Int = 6 {
willset(newNunber) {
print("About to change to \(newNumber)")

didset(oldNunber) {
print(*Just changed from \(oldNumber) to \(self.number)!")
3

OEBPS/Image00136.jpg
Choose a test plan.
Hover over test, then click run button.

Hover over diamond, then click run button.

00 » o A® lellowdrld: Ready | Today at 4:32 PM +
B 2 Qla © < > [Helloworld) [HelloWorldTests) s HelloWorldTests.swift) () HelloWorldTests [ic]
Test Plan: HelloWorld (Default) & 10 Qtestable import HelloWorld
n
G FloWorTest 2laa L class HelloWorldTests: XCTestCase {
13
D testExample() % override func setUp() {
3 testPerformanceExample() 5 // Put setup code here. This method is called before the
v (] HelloWorldUITests 2 tests invocation of each test method in the class.
1
v (@ HelloworldUiTests “7’ ’
0 testexample() 18 override func tearown() {
@ testLaunchPerformance() 19 // Put teardown code here. This method is called after the
invocation of each test method in the class.
20 }
2
o func testExample() {
2 // This is an example of a functional test case.
+ | @ Filter [me® 2% // Use XCTAssert and related functions to verify your tests

OEBPS/Image00061.jpg
protocol Blinking {

// This property must be (at least) gettable
var isBlinking : Bool { get }

// This property must be gettable and settable
var blinkspeed: Double { get set }

// This function must exist, but what it does is up to the implementor
func startslinking(blinkspeed: Double) -> Void

OEBPS/Image00135.jpg
D No devices connected to 'My Mac'...
/> Generic watchOS Device

8 Apple Watch Series 4 - 40mm
Apple Watch Series 44mm

Add Additional Simulators...

OEBPS/Image00058.jpg
class Car: Vehicle {

var engineType : String = "V8"

OEBPS/Image00138.jpg
o000 / B A)® Finished running HelloWorld on iPhone 11 Pro Max + &

2 QA O

Test Plan: HelloWorld (Default) &

© & |8 < > B Helloworld) I HelloWorldTests) MyUnitTestClass.swift) (&) MyUnitTestClass

1

2 // MyUnitTestClass.swift

3 // HelloWorldTests

a1

5 // Created by Ravi Patel on 9/11/19.
6

7

8

9

¥ [HelloWorldTests 4 tests.
v ([HelloWorldTests

0 testExample() o —
(O B Em) o // Copyright © 2019 Ravi Patel. All rights reserved. =
g
0 testExample() import XCTest
[testPerformanceExample() o
' (] HelloWorldUITests 2 tests <> class MyUnitTestClass: XCTestCase {
v (@ HelloWorldUITests 12
D testExample() o 13 override func setUp() {
1% // Put setup code here. This method is called before the
(e © invocation of each test method in the class.
15 }
16
17 override func tearDown() {
18 // Put teardown code here. This method is called after the
invocation of each test method in the class.
19 }
20
o func testExample() {
2 // This is an example of a functional test case.
2 // Use XCTAssert and related functions to verify your tests
L produce the correct results.
I+ | @ Filter B® 2% ¥

Select test class. Enter test code.

OEBPS/Image00059.jpg
class Car: Vehicle {
var engineType : String = "va"

// Inherited classes can override functions

override func description() -> String {
Tet description = super.description()
return description + *, which is a car"

OEBPS/Image00137.jpg
Choose options for your new file:

Class: = MyUnitTestCla:

Subclass of:

Language:

XCTestCase

Swift

~
v

Cancel

Previous

OEBPS/Image00056.jpg
var failableExample = InitAndDeinitExample(value: 6)

// = nil

OEBPS/Image00140.jpg
0O e

Identity and Type
Name 81331686.png
Type Default - PNG Image

Location Relative to Group

81331686.png

Full Path /Users/gita/Desktop/
GitHubPie/Find-Your-Dream-
Home/Find Your Dream
Home/Home Images/
81331686.png ©

On Demand Resource Tags

Image Properties
Dimensions 275 x 189 pixels
Resolution -
Color Space RGB
Alpha Channel Yes

Localization

Localize... «

Target Membership
#; Find Your Dream Home

OEBPS/Image00057.jpg
class Counter {

var nunber: Int = 0
¥
Tet myCounter = Counter()
myCounter .nunber = 2

OEBPS/Image00139.jpg
OBl <

|ooo > m A
BEERQAO

ur Dream Home

Find
v (23 Find Your Dream Home
' AppDelegate.swift

. MasterViewController.swift
. DetailViewController.swift
|+ Main.storyboard
[19) Assets xcassets
|+ LaunchScreen.storyboard
4 Info.plist
4 Homes.plist
¥ [Models
| Home.swift
v [Home Images
=) 81331686.png
&) 81343562.png
&) 81402336.png
&) 81403094.png
» 0 Products.

+ | @ Filter

) W@ iPhone XR
BCIE:
O

O

Finished running Find Your Dream Home on iPhone XR £} 6
< > [& Find Your Dream Home
B Find Your Dream Home & Info

¥ Deployment Target

i0S Deployment Target 12.0

v Configurations

Name.
» Debug
» Release
+
Use Release for command-line builds

¥ Localizations

Language
English — Development Language

+

Use Base Internationalization

Build Settings

Based on Configuration File
No Configurations Set
No Configurations Set

Resources
2 Files Localized

<a>

OEBPS/Image00054.jpg
class InitAndDeinitExample {

}

// Designated (i.e., main) initializer
it () {
print("I've been created!")
1
// Conventence initializer, required to call the
// designated initializer (above)
convenience init (text: String) {
self.init() // this is mandatory
print("I was called with the convenience initializer!"
1
// beinitializer
deinit {
print("I'm going away!")

}

var example : InitAndDeinitExample?

// using the designated initializer

example
example

InitandDeinitxanple() // prints "I've been created!
nil // prints "I'm going away"

// using the convenience initializer
example = InitAndDeinitExample(text: “Hello")
// prints "I've been created!" and then

//

"I was called with the convenience initializer”

OEBPS/Image00055.jpg
// This 1s a convenience initializer that can sometimes fail, returning nil
// Note the ? after the word 'init'
convenience init? (valve: Int) {

self.init()

if value > 5 {
// We can’t initialize this object; return nil to indicate failure
return nil

OEBPS/Image00051.jpg
RSV

var welcone
welcome. insert("!
/1 welcome now equals

welcome. insert(contentsOf:

welcome. endIndex))
/1 welcome now equals

+ welcome.endIndex)

hello!”

there”, at: welcome. index(before:

hello there

OEBPS/Image00052.jpg
class Vehicle {

var color: String?
var maxspeed = 80

func description() -> string {
return "A \(self.color) vehicle"

}

func travel() {
print("Traveling at \(maxspeed) kph")
1

OEBPS/Image00049.jpg
AN e

for index in greeting.indices {
print("\(greeting[index]) "

¥

/lPrints "Guten Tag!

, terminator

OEBPS/Image00050.jpg
1.for index in greeting. es{
2.print("\(greeting[index]) ", ter
3.}

4.//Prints"Goodmorning!”

OEBPS/Image00047.jpg
1Lvar variableString = "Dog
2.variableString += " and cat"

3./ variableString is now "Dog and cat”
a

5.let constantString = "favorite”

6.constantString += " and another favori

7.//4

reports a compile-time error - a constant string cannot be modi

ed

OEBPS/Image00048.jpg
[P SV

10

let greeting = "Guten Tag!"
greeting[greeting. startIndex]

/16

greeting[greeting. index(before: greeting.endIndex)]
7"
greeting[greeting. index(after: greeting.startIndex)]
/1y

let index - greeting.index(greeting.startIndex, offsetBy:

greeting[index]
/"a

7

OEBPS/Image00045.jpg
1.let threeDoubleQuotationMarks =
2.Escaping the first quotation mark\"™""
3.Escaping all three quotation marks \"\"\"
o

OEBPS/Image00046.jpg
1

E

var emptyString = 17 empty string literal
var anotherEmptyString = String() // initializer syntax
/1 these tuo strings are both empty, and are equivalent to each other

OEBPS/Image00053.jpg
var redvehicle = Vehicle()

redvehicle.color = "Red”

redvehicle.maxspeed = 96

redvehicle.travel() // prints “Traveling at 96 kph"
redvehicle.description() // = "4 Red vehicle"

OEBPS/Image00120.jpg

OEBPS/Image00044.jpg
Llet wiseWords ="\"Imagination is more important than knowledge\" - Einstein'

2.//"Imagination is more important than knowledge" - Einstein
3.let dollarSign="\u{24}" // $, Unicode scalar U+0024
4.letblackHeart="\u{2665}" // @Unicode scalar U+2665

5.let sparklingHeart ="\u{1F496}" // B, Unicode scalar U+1F496

OEBPS/Image00119.jpg

OEBPS/Image00122.jpg

OEBPS/Image00121.jpg

OEBPS/Image00123.jpg

OEBPS/Image00040.jpg
1.let quotation =
2.The Red goat wears his spectacles. "Where shall I start,
3.Allow me your Majesty?" he begged.

4.

5."Start at the beginning," the Queen said gravely, "and go on
6.1ill you reach the end; then stop."

==

OEBPS/Image00041.jpg
B e

let singlelineString
let multilineString
These are the same.

“These are the same."

OEBPS/Image00038.jpg
if enteredDoor Code && passedRetinaScan || hasDoorKey || knowsOverridePassword {
2.print("Welcome!")

3.}else{

4.print("ACCESS DENIED")

5}

6.// Prints "Welcome!"

OEBPS/Image00114.jpg
Show the Quick Look results

Ready to continue BlankPlayground {} @ &

89 < > L5 BlankPlayground

import UTKit

var j =2 A
for i in @ ..< 5 {

=3+ (G *xi))
}

@ulooewoa

OEBPS/Image00039.jpg
1.if (enteredDoorCode && passedRetinaScan) || hasDoorKey || knowsOverridePassword {
2.print("Welcome!")

3.}else{

4.print("ACCESS DENIED")

5}

6.// Prints "Welcome!"

OEBPS/Image00036.jpg
1.let enteredDoorCode = true

2.let passedRetinacan = false

3.if enteredDoorCode && passedRetinascan {
4.print("Welcome!”)

5.}else{

6.print("ACCESS DENIED")

7.}

8.// Prints "ACCESS DENIED"

OEBPS/Image00116.jpg
88

Qowuoaswna

=

>

Color literal

|3] MyPlayground) s Untitfed

//: [Previous](@previouk)
import UIKit

var str = "Hello, playgjrou
var imageView = UIImagel/ie

imageView. tintColor

//: [Next](@next)

Ready | Today at[2:45 PM

Current Color

Other...

OEBPS/Image00037.jpg
4.print("Welcome!”)
5.}else{

6.print("ACCESS DENIED")
7.}

8.// Prints "Welcome!"

OEBPS/Image00115.jpg
Ready to continue BlankPlayground {} @

89 < > |3 BlankPlayground

1 import UIKit
2
3 var j =2 2
4
5 foriine ..<p{
6 =i+ G xi) (5 times) @
7Y
®
= O

Add a results view to the playground.

OEBPS/Image00034.jpg
1.let contentHeight = 40
2.lethasHeader = true

3.let rowHeight: Int

hasHeader {

5.rowHeight = contentHeight +50
6.else{

7.rowHeight = contentHeight +20
8}

9.// rowHeight is equal to 90

OEBPS/Image00118.jpg
Select a user interface file.

H | A)w
=)

¢oe »

l
BEZ QA
v [fs Helloworld
[[Helloworld
. AppDelegate.swift

+| SceneDelegate.swift
4| ViewController.swift
| - Main.storyboard [
|5 Assets.xcassets
| LaunchScreen.storyboard
Info.plist
¥ [HelloWorldTests
4| HelloWorldTests.swift
Info.plist
¥ [HelloWorldUITests.
! HelloWorldUITests.swift
Info.plist
» i Products

+ [@Filter (o))

Show or hide the outline view.'

Outline view

HelloWorld: Reddy | Today at

B8 < > [delioworid) B) [0) 0) E) O [[view)

v [] View Controller Scene
v () View Controller

v [view

Safe Area
L]Label
[B]Button

»> [Constraints
@ First Responder
[E] Exit

-> Storyboard Entry Point

®

:56 PM

Open the library.

Canvas Select an inspector.

Label

Do eaE ¢ i o

I 1 Label

e Text Plai <
i e rext | Plain B
R Label
i Color M Default (Label Color)
& Font System 40.0 (]

Automatically Adjusts Font

Dynamic Type

Alignment
Lines 1)
Behavior [Enabled
Highlighted
SN Baseline _Align Baselines
Button Line Break _Truncate Tail
Autoshrink _ Fixed Font Size
Tighten Letter Spacing
+ Highlighted W Default
+ Shadow _— Default
Shadow Offset 0l -1
Width Height
= e
Content Mode _Left
Semantic Unspecified
] L View as: iPhone 11 Pro Max («C 1R) | Tag 0°s

|Change device configurations.

OEBPS/Image00035.jpg
Llet allowedEntry = false

tallowedEntry {

3. print("ACCESS DENIED")
a}

5.// Prints "ACCESS DENIED"

OEBPS/Image00117.jpg
[XON } Ready | Today at 8:20 |
BXZQ (]

MyPlayground

A 4l .Y Untitled Page 2

v Sources

[=ac)

P> Resources
» 5| Untitled Page
v Sources
> Resources

+ | @ Filter OF

OEBPS/Image00042.jpg
1.let softWrappedQuotation =
The Red goat wears his spectacles. "Where shall I start,

Allow me your Majesty?" he begged.

“Start at the beginning," the Queen said gravely, "and goon

till you reach the end; then stop."

Ny o w o

OEBPS/Image00043.jpg
LletlineBreaks=
2.

3.This string starts with a line break.

4.ltalso ends with a line break.
5.

OEBPS/Image00131.jpg
Connection [Action) Choose Action.

Object () View Controller

Name |sayHeld |- Enter an action method name.
Type AnyObject

Event (Touch Up inside &
Arguments

—— Create the connection.

OEBPS/Image00130.jpg
Connection [Outlet < Choose Outlet.
object () View Controller

Name Enter a property name.
Type UlLabel v
Storage [Weak s Choose a reference type.

Cancel

Create connection.

OEBPS/Image00133.jpg
' iPhone
/> Generic iOS Device

8 iPad (5th generation)
@ iPad (6th generation)
@ iPad Air (3rd generation)
@ iPad Air 2
4 iPad Pro (9.7-inch)
@ iPad Pro (10.5-inch)
@ iPad Pro (11-inch)
8 iPad Pro (12.9-inch)
@ iPad Pro (12.9-inch) (2nd generation)
@ iPad Pro (12.9-inch) (3rd generation)
8 iPhone 6s
8 iPhone 65 Plus
8 iPhone 7
8 iPhone 7 Plus
W iPhone 8
98 iPhone 8 Plus
98 iPhone SE
98 iPhone X
8 iPhone Xs
8 iPhone Xs Max
v 8 iPhone Xr

Add Additional Simulators...
Download Simulators...

—— Choose a real device.

—— Choose a generic device to
build using platform SDKs.

[~ Choose a simulator of a
device family.

—— Customize simulators.

OEBPS/Image00132.jpg
Edit Scheme...
New Scheme...
Manage Schemes...

OEBPS/Image00029.jpg
1Lletname = "John"

2.if name =="John" {
3.print("hello, John")
ajelse{

5.print("'m sorry \(name), but | don't recognize you")
6.}
7.// Prints "hello, John", because name.

ndeed equal to "John".

OEBPS/Image00030.jpg
1.(1, "apple") < (2, “zebra") // true because 1 is less than 2; "apple" and "zebra" are not
compared
2.(3, "apple”) < (4,

") // true because 3 is less than 4, and "apple” and "bird" are not

compared.

3.(4, "dog")

(4,"dog") // true because 4 is equal to 4, and "dog" is equal to "dog”

OEBPS/Image00027.jpg
lvara=1

3.//ais now equalto 3

OEBPS/Image00125.jpg

OEBPS/Image00028.jpg
18

8 // true because 8 isequal to 8
2.51=1// true because 5 is not equal to 1
3.5>1// true because 5 is greater than 1
4.0<2// true because 0 isless than 2
5.1>=1// true because
6.7 <=1// false because 7

greater than or equal to 1

not less than or equal to 1

OEBPS/Image00124.jpg
Drag an object from the library.

Release the object on the canvas. Enter text to filter the list. Open the library.

» | B | A Heloworld) g Phane 11 ProMax | Helloworic{Ready | rocay at 4:18 P S =3 (=I=01=]

B2 < > [HelloWorld) b HelloWorld) (* Main.storyboard) '+| Mainstorybolrd (Basf)) No Selection Do o T 00
¥ [View Controler Scene sk
View Control
¥ O ew Contrlr [y |

. Q] Objects
st Responder
Beat ®E e

=> Storyboard Entry Point

Buton 1 2 Tt = = | Label

UlLabel: Presents read-only text

A label can contain an arbitrary amount of text, but UlLabel
may shrink, wrap, or truncate the text, depending on the size
of the bounding rectangle and properties you set. You can
control the font, text color, alignment, highiighting, and
shadowing of the text in the label.

®] View as:iPhone 11 («C /R) — 4a8% + @B tol lal @

OEBPS/Image00025.jpg
1.7+2 // equals 10
2.8-3// equals 5
3.4%3// equals 12
4.80/2.0// equals 4.0

OEBPS/Image00127.jpg
Select an object on the canvas.

o000) B A)B HelloWorld: lteady | Today at 4:23 PM a2 + &
88 < > [HelloWorld) i H..rid) B M..rd) B M..e)) 5] vi.e) O Vi..er)] view) [B] Button < 44 > Do o6 T B ©
v [5] view Controller Scene ~ © Button
¥ () View Controller) Type System
vOview State Config | Default
TLabel Title_Plain
B]Button Button
@ First Responder + Font | System 40.0
> Storyboard Entry Point Teot Color | Default
Shadow Color | Default
| Image
SN Label Add New Alignment Constraints |
ey . | Symbol Configuration
— Butto Iration | Unspecified
° Scale | Unspecified
o Welght _Unspecified
sibilty | Adjusts Image Size
" oftset 02 o2

|— Horizontally in Container

Center horizontally and vertically.

] View as: iPhone 11 Pro Max [(wC nR)

Add the constraints. |

L @) Vertically in Container
Add 2 Constraints

I

] |Break

| Dragiand Drop

Lanteal

Open alignment dialog.

Width Height
Reverses On Highlight
‘Shows Touch On Highlight

ighlighted Adjusts Image
Disabled Adjusts Image
Truncate Middle

Spring Loaded

OEBPS/Image00026.jpg
1."hello, " + "world" // equals "hello, world"

OEBPS/Image00126.jpg
Show or hide the device configuration panel.

ece » A) B || Helowdid: Ready | Today at 4:21 PM a: 0 + < O O

;| < [HelloWorld) [HelloWorld) [Main.storyboard) '+ Main.storyboard (Base)) =] View Controller Scene) (C) View Controller <h>

v [5] View Controller Scene °
¥ () View Controller =

O view

Safe Area

L]Label

B]Button

@ First Responder

[E] Exit

> Storyboard Entry Point

[[] View as: iPad 10.2" (7th generation) («R 1R) 20% QB fof ta [

0: 08 0o oo

Orientation Layout

|Choose a device configuration. Create a user interface variation.

OEBPS/Image00129.jpg
®@0® P W A)@iPho.Max | HelloWorld: Ready | Today at 5:34 PM

Show the preview.

+ o0 D)0

88 < > [B HelloWorld) B HelloWorld) [3) Main.storyboard) [+ Main.storyboard (Base) »

v (£ View Controller Scene
v ©) View Controller
v O view
Safe Area
L |Label
| 8]Button
» [Constraints.
@ First Responder

- Storyboard Entry Point

iy
Q _g
odo

Label
Button

View Controller Scene » () View Controller » [view » [E] 8utton

@ Filte [i] View as: iPhone 11 Pro Max (+C 1R)

a5

Label LABEL LABEL
Button BUTTON BUTTON

Double-Length Pseudolanguage

Add another device preview.

Hover and click to change Choose a language.
orientation.

OEBPS/Image00024.jpg
ifa=b{
2.// This is not valid, because a = b does not return a value.
3.}

OEBPS/Image00128.jpg
eoe »

ter Scene

@ vastor
@ First Responder
it

Relationship *root view controller"..

v [Detail scens
v O petai
View
[<]oetal
@ First Responder

v [spit View Controller Scene
@ st View Controller
@ First Responder
ext
-5 Storybaard Entry Point
Relationship ‘master vew contrll

v [Master Scer
v © Mastor
> [Table View
[<]Master
it Responder
it
‘Show Detail segue “showDetai to

v [Navigation Controller Scene
v @ Navigation Contrller
[Navigation Bar
@ First Responder
At

Relationship *root view controller”

B /A MasterDetail) @ iPhone 11 Pro Max

s MasterDetail) 13 MasterDetail) [R) Main.storyboard)

Container view controller scene

Relationship between a container and child

Content view controller scene

MasterDetail: Ready | Todaylot 5:21 PM

Wain.storyboard (Base)) £ Master Scene) @ wastfr

Segue between scenes

™

>0 d O

Master
prototype Cols
Title
2O avigation Controller —O-)| —@->| Navigation Controller —O-
Table View
[[] View as: iPhone 11 (+C 1R) — 5% +

© B o @

OEBPS/Image00033.jpg
1.let contentHeight =40
2.lethasHeader = true

3.let rowHeight = contentHeight + (hasHeader ? 50 : 20)

OEBPS/Image00031.jpg
1.("blue”, -1) < (“purple”, 1) // OK, evaluates to true

2.("blue”, false) < ("purple”, true) // Error because < can't compare Boolean values

OEBPS/Image00032.jpg
1.if que

on{
2.answerl
3Jelse
4.answer2
5.}

