Programming iOS 14 Using

SWIFI Ul

Get Started With Building iOS 14 With
Swift 5 and Xcode

Gary Elmer

Programming iOS 14

Using Swift Ul

Get Started With Building iOS 14 With Swift 5 and
Xcode

Gary Elmer

Copyright

Copyright©2020 Gary Elmer

All rights reserved. No part of this book may be reproduced or used in any manner without the prior
written permission of the copyright owner, except for the use of brief quotations in a book review.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper.

Printed in the United States of America
© 2020 by Gary Elmer

Table of Contents

Copyright
CHAPTER ONE

WELCOME TO SWIFTUI
THE SWIFT 5.3 PROGRAMMING LANGUAGE

Variables and Constants .

How to declare Variables and Constants

How to name Constants and Variables

How to print Constants and Variables

The Swift Tuple

The Swift Optional Type

Error Handling in Swift

Assertions and Preconditions
CHAPTER TWO

Basic Operators in Swift

Assignment Operator

Compound Assignment Operators
Logical Operators

Combining I.ogical Operators
Explicit Parentheses

Strings and Characters

Special Characters in String Literals
Working with Characters

Unicode
CHAPTER THREE

Classes and Obijects in Swift

Initialization and Deinitialization

Properties
Observers

Protocols
Extensions
Access Control
Operator Overloading
Generics

CHAPTER FOUR

Introduction to Swift’s Functions

Defining and Calling Functions

Function Parameters and Return Values

Functions without Parameters

Functions with Multiple Parameters

Function Argument [.abels and Names of Parameter .

Default Parameter Values

Function Types as Parameter Types
The defer Keyword
CHAPTER FIVE
GETTING READY ON THE ROUTE TO DEVELOPING iOS 14 BASED APPS
The Apple Developer program
Enrolling in the Apple Developer Program
CHAPTER SIX
THE Xcode 12 and the iOS 14 SDK

Installing Xcode 12 and the iOS 14 SDK

Creating a project with Xcode 12
The Xcode 12 Main Window (The Xcode 12 interface)

The Debug area
View threads in the debug area

View variables in the debug area

Managing project file

Organize files in groups
CHAPTER SEVEN

AN INTRODUCTION TO Xcode 12 PLAYGROUND

How to create a playground

Edit a playground

Run a playground

Add auxiliary code to a playground
CHAPTER EIGHT

USING Xcode in SwiftUI Mode
CREATING A SWIFT UI INTERFACE
Run on a connected device

CHAPTER NINE

Connecting codes with the user interface using the Interface Builder workflow

Add user interface objects to the canvas

Connecting objects to codes

Connect from an object to code
CHAPTER TEN

Build and run vour app

Creating and distributing a watch-only app
CHAPTER ELEVEN

LOCALIZING YOUR APPS

Adding languages supported by apps in the App Store
CHAPTER TWELVE
GETTING YOUR APPS TO THE STORE

App thinning (For iOS, tvOS and watchQOS)

Slicing (for iOS. tvOS)

Bitcode

Distribute an app through the App Store
ABOUT AUTHOR

CHAPTER ONE
WELCOME TO SWIFTUI

Apple announced the Swift programming language at its 2014 Worldwide
Developers Conference (WWCD). Before Swift, Apple used the Objective —
C programming language to develop apps for all of its devices (iOS, tvOS,
watchOS, maOS and the iPadOS). Apple uses SwiftUI, as a substitute to
Objective-C, as an innovative means of designing responsive user interfaces
across all of their platforms. Although Swift can be used on many platforms,
it is especially a handy program of choice for building applications on Apple
devices — ranging from devices that run on WatchOS, MacOS, tvOS and the
most popular OS that runs iPhone (i0S). Swift UI understands what a device
user doesn’t understand. SwiftUI understands what every button on your
device is working for and how it can be tapped, and it also entails how device
users’ enter texts on their devices.

For developers, developing an app is the act of writing Swift codes to control
SwiftUI. Swift is a language that says “I want a text field here, a button over
there and an image at this place” while the SwiftUI is the exact part of the
whole design that actually knows how draw that text at the exact place, hot to
make that button and exactly how show that image at the right place.

In summary, Swift is an exciting programming language that you can use to
build apps for Apple Watch, iPhone, iPad, Mac, Apple TV and lots more.

This guide will take you on an expensive tour to building the latest Apple’s
iOS 14 applications using the SwiftUI, Xcode 12 (which is the latest
Xcode) and the Swift 5 Programming language (Swift 5.3).

Before we go in depth into the real deal of designing iOS 14 with Swift, let us
take a brief look at the Swift 5.3 programming language as it is an updated
Swift language compared to the 4.2 released in 2017.

THE SWIFT 5.3 PROGRAMMING
LANGUAGE

The Swift 5.3 Basic

Why Swift?

Swift, Apple’s newest programming language, has been designed for iOS,
watchOS, tvOS and macOS app development. Most readers who have used
Objective-C programming language before will find Swift language very
familiar.

Swift has its own types of all of the basic C and Objective-C types; ranging
from Int for integers, Bool for Boolean values, String for textual data and the
Double and Float for floating-point values.

Like the C programming language, Swift deploys variables to refer to values
and store them. Swift, like most programming languages, makes good use of
variables that don’t change values. Constants are variables with unchanging
values. Swift’s constants are actually more useful and powerful than the
constant in C language. Swift utilizes constants all through to make codes
used in the development of apps clearer and safer in usage and intent.

Along with some familiar types common to both Swift and many popular
languages in programming, Swift now introduces advanced types called
tuples which was not obtainable in Objective C programming language
(Apple uses the objective C language before Swift in 2014). With Tuples,
you will be able to build and use values that have been grouped. A tuple,
normally, can be utilized to return many values from any function as one
compound value.

Swift also brings, with its many features, an optional type that help to handle
the lack of a value. The optionals imply either “there is presence of a value
which is equal to X” or “no value exists”. The optionals in the Swift language
are much like the nil with pointers for the Objective-C programming, only
that the optional is applicable for any type, and not only for classes. Unlike
the nil pointers in the Objective-C, the Swift’s optionals are much safer and
expressive and they are at the interface of many of Swift’s most useful
features.

Swift can be regarded as a type-safe programming language; this implies that
the language gives you a clear shot of the categories of values that can
actually work with your code. Let us say some areas in your code need a
String data type, safety will not allow you to mistakenly give it an Int data
type. In the same vein, the type safety capability in Swift prevents users from

mistakenly giving an optional String data type to a particular piece of code
needing a non-optional String. With the type safety in Swift, it becomes
especially very easy to see and fix errors in codes during the development
phase once they are spotted.

Variables and Constants .

These can be regarded as the beauty of Swift. In your app development, you
can assign a particular name like welcomeMessage or
highestNumberOfLoginAttempts , and put a value or you can put a prompt
with a value of your choosing (like the "Hello" string or the value 10). This
actually implies that the number 10 is the maximum attempts that can be
made by a user. This will serve as a security measure to prevent unauthorized
access to that app. Also, the welcome message when the app is launched will
be “Hello.” Once you set a value for your constant, you will not be able to
change it anytime later. On the contrary, you can always set another value for
your variable at any point in time.

How to declare Variables and Constants

Variables and constants cannot be used without necessarily declaring them in
your codes. Constants are declared by the let keyword while the var keyword
is used essentially to declare your variables. The below is a typical example
of how your Variables and Constants can be deployed to monitor the exact
value of attempted login by a particular user;

- let maximumMumberOfLoginhAttempts = 140

- war currentloginAttempt = 0

The above code actually means;

“Declare a constant named maximumNumberOfLoginAttempts, and assign it
a number 10. Then, state a variable tagged currentL.oginAttempt, and assign
it 0 as the initial value.”

In the above example, the amount of login attempts allowable has been stated
as the constant, since the maximum value does not change. The current login
attempt counter has been stated as a variable, since the value will actually be
increased after each login attempt that fails.

Commas can be utilized to declare multiple variables or constants on a single
line. You only have to list the variables and then separate them with a
comma.

L. war = — 0.0 y = 0.0, =z =010

Note: always use the let keyword to declare store values that won’t change in
the code and the values that can change should be mentioned as a variable.

Type Annotations

You can assign a type annotation once you have declared your variables or
constants, if you wish to have a clear understanding of the categories of
values that can be stored by the variable or constant. Enter a type annotation
by putting a colon right after the name of the variable or constant, insert a
space and then put the name of the type that you wish to use. Look at the
below example for the type annotation for the variable named
welcomeMessage, which clearly indicate that only String values can be
stored by the variable:

1. var welcomeMessage: String

The colon meaning of the colon in the declaration above is “...of type...,”
and the above code can be read as:

“Let a variable called welcomeMessage of the String type be declared.”
The “of type String” phrase actually denotes “can store any String value.”

You can then proceed to set the variable welcomeMessage to any string value
without any error:

1. welcomeMessage = "Hello"

Multiple related values having the same type can be declared on one line that
is separated by commas, and then input a single type annotation just right
after the variable’s name;

var red, green, blue: Double

It is actually rare in practice that you will be required to write type

annotations. When you input any initial value for a particular variable or
constant at the point where it has been defined, Swift will try to infer the data
type that can be deployed for that particular variable or constant. If you look
at the welcomeMessage above, you will see that no initial value has been
given, hence the welcomeMessage variable’s type has been specified with a
type annotation instead of being inferred.

How to name Constants and Variables

Variables and Constants names are not choosy when it comes to characters
designation as they can actually contain any character type (with some few
exceptions), even the Unicode characters:

1. let m = 3.14159

Whitespace characters, private-use Unicode scalar values, arrows,
mathematical symbols or the line- and box-drawing characters should not be
utilized as characters. Characters cannot, as well, start with a number, but the
number can be included somewhere else within the name.

Once a variable or constant of a certain type has been declared, you will not
be able to declare such variable or constant again with the same name; neither
can you even change it to a store value of another type. Also, you will not be
able to convert a variable into a constant and vice versa.

If you plan to assign a variable or a constant the exact same name as a
reserved Swift keyword, you will need to add a backticks (") to the keyword.
But it is actually advisable that you don’t use keywords as names unless there
is a need to use them.

Also, you will be able to change an existing variable’s value to another value
that is compatible. In the case below; the value of "“friendlyWelcome” has
been changed from "Hello!" to "Greetings!":

L %]

H

I

I

Il

|

[

;

il

=i

¥

(]

g

m
|

I|
T
T

2

I

=]

V]
1]

L
h
H
[
i
=]
]
I
=
m
]
sl
]
s
=
m
(50
m
=}
9

Once the actual value of a constant has been set, you will not be able to

change its value unlike that of a variable. If you make an attempt to modify
the value of a particular constant in your code, you will get an error prompt
when the code is compiled.

1. let languageMam= = "Java"
2. languageMams = "Java++"
3. // This is a compile-time error: languageName cannct be changed.

How to print Constants and Variables

You can print the current value of a particular variable or constant can be
printed by using print(_:separator:terminator:).

1. print(friendlyWelcome)
2. // Prints "Greetings!"

The print(_:separator:terminator:) function is described as a global function
that is able to print one or more values to a particular output. While working
with Xcode (the Integrated Development Environment for developing apps
for Apple devices), for instance, the print(_:separator:terminator:) function
will print output in the Xcode’s “console” pane. The terminator and separator
parameters actually have default values, hence omitting them when you call
the function is acceptable. By default, the function will add a line break to
terminate the line it prints. If you plan to print a certain value without
necessarily having the line break after it, simply use an empty string as
terminator—for instance, print(someValue, terminator: "").

Swift deploys string interpolation to add the name of a particular variable or
constant as a placeholder in a longer string, and to ask Swift to substitute it
with the current value of that variable or constant. Use parentheses to wrap
the name and then escape the name with a backslash just before the opening
parenthesis:

1. print("The current wvalue of friendlyWelcome is \ (friendlyWelcome) ™)
2. // Prints "The current wvalue cof friendlyWelcome is Greetings!"
Comments

Comments are used in a line of codes to include texts that are not executable;

probably as a reminder or a note to ask the users to carry out some actions.
The Swift compiler will disregard comments during code compilation.

The Swift’s comments and the Comments in the C programming language
are very similar. Two forward slashes are used to initiate single line
comments.

1. // This is a comment.

Use the forward slash together with an asterisk (/*) to begin a multiline
comment and then end it with an asterisk and a forward-slash (*/):

1. /* This is alsc a comment

2. but is written over mmltiple lines.

Unlike the multiline comments in the C programming language, you can
actually nest a multiline comment in Swift inside another multiline comment.
To write a nested comment, start a multiline block and then begin a second
multiline comment within the first block. You can then close the second
block and then follow it by the first block;

1. /* This is the start of the first mmltiline comment.
2. /* This is the seccnd, nested multiline ccmment.

3. This is th

m

end of the first multiline comment. */

The Nested multiline comments allow users to comment out large areas of
code fast and stress free, even if the code has the multiline comments already.

Semicolons

The Swift language, unlike most other languages, doesn’t need users to input
a semicolon (;) right after each statement in their code, although anybody can
put a semicolon in Swift code if they wish. However, you will need to put
semicolons if you plan to write multiple separate statements right on one line:

1. let dog = " @€ "; print(dog)
2.// Prints " @€ "

Integers

From basic mathematics, integers are whole numbers that have no fractional
part, such as 57 and -45. Integers can either be signed (+ve, 0, or —ve) or
unsigned (+ve or 0).

With Swift, the signed and unsigned integers in 8 bits, 16 bits, 32 bits, and 64
bit forms are accounted for. Just like the way integers are named in the C
language, Swift also follows the same pattern in that an 8-bit unsigned integer
will have the UInt8 type while a 32-bit signed integer will have the Int32

type.
Integer Bounds

The min and max properties of integers can be used to check the minimum
and maximum values of each integer type;

let minValue = UInt8.min // minValue is equal to @, and is of type UIntS3
2 let maxValue = UInt8.max // maxValue is equal to 255, and is of type UInt8

Each property has the appropriate-sized number type (like the UInt8 in the
above example) and can be deployed in expressions together with other
values of equal type.

Int

In some cases, you don’t necessarily have to select a specific integer size to
be used in your code as Swift actually provides an extra integer type called
Int with the same size as the native word size of the current platform;

e If you have a 32-bit platform, the Int will be of equal size as Int32.

e If you have a 64-bit platform, the Int will be of equal size as Int64.

You should always deploy Int for values of integers in your Swift code
unless you are required to work with a particular integer size. This enables
interoperability and consistency in your codes. On a 32-bit platform, Int can
actually store values between -2,147,483,648 and 2,147,483,647, which are
actually sufficient for many types of integers.

Ulnt

Swift also gives an extra integer type called UInt with the same size as the
native word size of the current platform:

e If you have a 32-bit platform, UInt will be of equal size as UInt32.

e If you have a 64-bit platform, UInt will be of equal size as UInt64.

Using Int consistently in your code for integer value is better as it allows
code interoperability and saves you the stress of converting from one number
type to another. Hence, you should only use Ulnt if you actually require an
unsigned type of integers that have the same size as that of the native word
size of your platform.

Floating-Point Numbers

Floating-point numbers are values that have a fractional part, like
7.4998, 0.5, and -273.15.

The Floating-point types can have a much wider value than the integer type
and can be deployed to store larger or smaller values that can be stored in an
Int. In Swift, there are two forms of the floating-point number types;

e Double stands for a 64-bit floating-point number.

e Float stands for a 32-bit floating-point number.

Double has a precision of say 15 digits while the Float has about 6 decimals
in precision. The nature and the range of values you are expected to use
within your code will actually determine the floating-point type you can
utilize. In a case where any of the two types of floating-point is suitable,
kindly use the Double floating-point type.

Type Safety and Type Inference

The swift language is a typical type-safe language. A type safe language
allows clarity with the type of values that can actually work with your Swift
codes. If any part of your line needs a String, you cannot mistakenly
substitute an Int.

The type-safe in Swift carries out type checks during code compilation and
will prompt any wrong types as an error. This enables quick matching and
fixing of errors during the compilation stage of your app development.

Type-checking also helps in avoiding errors while working with different
kinds of values. This doesn’t mean that you will need to specify the kind of
every variable and constant that you are using as Swift is capable of using the
type inference to know the appropriate type you are working with. Type
inference allows a compiler to automatically know the type of a certain
expression during codes compilation just by checking the values you enter.

Due to the advantages provided by the type inference, the Swift language
actually needs far lesser type declarations than most other programming
languages like the C or Objective-C. Although, you will still have to enter the
variables and constants but a large chunk of specifying the type you are
working with will be done for you automatically by Swift.

Type inference is especially advantageous when you deploy an initial value
to declare a variable or a constant. This is mostly carried out by assigning to
the constant or variable a literal value (or literal) at the point where you are
declaring your constant or variables. You can view a literal value as a value
that shows in your source code, like 60 and 3.14159 in the below examples.

For instance, if you provide a literal value of 60 to a particular constant
without indicating the type, the Swift will automatically pass an Int for the
constant since you have begin it with a number that resembles an integer;

1. let meaningDfLife = &0

2. // meaningDflife is assumed to be of type Int

Also, if no type has been indicated for a floating-point literal, Swift will
automatically assumes that you mean to pass a Double;

L. let pi.— 314150

2. // pi is inferred to be of type Double

Swift will always use Double (and not Float) when assuming the type of
floating-point numbers.

If you have combined floating-point literals and integers in an expression,
Swift will tend to assume a type of Double from the statement;

1. let anotherPi = 3 + 0.14159

2. [/ anotherPi is equally assumed to be of type Double

The literal value of 3 does not really have an explicit type in and of itself;
hence an output type Double has been inferred owing to the floating-point
literal in the addition.

The Swift Tuple

The Swift tuple is probably one of the simplest, yet most useful features
defined in the Swift programming language. With a tuple, you can always -
albeit temporarily - group multiple values together into one entity. The item
you store in a tuple can be of any type since there are no binding rules that
say the items must be of the same type. You can construct a tuple to have a
Float value, an Int value and a string as you can see below;

let myTuple = (12, 452.433, "This is a String") Swift Data Types, Constants
and Variables.

You can access a tuple quickly by referencing the index place (the first value
being at index 0). For instance, the code below extract the string resource
(found at index position 2) and then assign it to a another string variable;

let myTuple = (12, 452.433, "This is a String")

let myString = myTuple.2

print(myString)

Alternatively, you can extract all the values in a particular and then assign
them to constants or variables in a single statement;

let (myFloat, myInt, myString) = myTuple

This same method can be deployed to extract some selected values from a
tuple and then ignore others by substituting them with an underscore
character. When you take a look at the code fragment below, you will see that
the code extracts the string and integer values from the tuple and then assign
them to variables but the floating-point value has been ignored;

var (mylnt, _, myString) = myTuple

You can assign a name to each value when you are creating a tuple like the
one below;

let myTuple = (count: 10, length: 432.433, message: "This is a String")

The values in the codes can then be referenced by the names given to the
values stored in the tuple. For example, let us say that you want to get the
result of the message string value from the myTuple, you can deploy the line
of code below;

print(myTuple.message)

Tuple has an intrinsic ability to output multiple values from a function.

For example, a (404, "Not Found") tuple describes the status code of
an HTTP status. An HTTP status code is actually a special value prompted by
a web server (as an error) anytime you request a web page from the internet.

The error code is to tell you that the webpage does not exist.

1. let httpd04Error = (404, "Not Found")
2. // http404Error is of type (Int, String), and equals (404, "Not

Found")

The (404, "Not Found") tuple actually group an Int and a String together to
assign two different values to the HTTP status code: a number (404) together
with a human-readable description. You can describe the (404, "Not Found")
tuple as a tuple of type (Int, String)”.

The Swift Optional Type

The Swift optional data type is a new data type that is essentially lacking in
most other programming languages like the Objective-C programming
language. The reason for the optional type is to afford a consistent and safe
approach to take care of instances where a constant or a variable may not
have any assigned value.

You will be able to declare any variable as an optional variable by putting a
question mark character (?) right after the type declaration. The code below
declares an Int variable (which is optional) named index;

varindex: Int?

The variable named index, now, can have an integer value given to it or
nothing at all. The compiler and the runtime will see “nothing” as nil (the nil
value will be assigned by the compiler).

You can use an “if statement” to test whether an optional has an assigned
value (Swift Data Types, Constants and Variables) or not.

var index: Int?

if index != nil {
// index variable has a value assigned to 1t
] else |

// index variable has no value assigned to it

If there is a value assigned to an optional, the value will be said to be

“wrapped” within that optional. You can use a method called forced
unwrapping to access any value that has been wrapped in an optional. This
means that the value will be extracted from the optional data type by putting
an exclamation mark (!) in front of the optional name. Check the code below
to understand this more;

var index: Int?

index = 3

var treeArray = ["Oak", "Pine", "Yew", "Birch"]
if index !=nil {

print(treeArray[index!])

} else { print("index does not contain a value")

}

The code above simply deploys an optional variable to capture the index into
an array of strings representing the identity of the tree. If the index optional
variable possesses any assigned value, the name of the tree at that location
inside the array will be printed to the console. Since the index is actually an
optional type, its actual value has been unwrapped by putting an exclamation
mark right after the name of the variable;

print(treeArray[index!])

Had it been that index has not been unwrapped (if the exclamation mark was
omitted from the line above line), an error would have been prompted by the
compiler as indicated below;

Value of optional type 'Int?' must be unwrapped to a value of type 'Int'

As an alternative to the forced unwrapping method, you can actually allocate
the value you assigned to an optional to a temporary constant or variable
using optional binding of the below syntax;

if let constantname = optionalName {

}

if var variablename = optionalName {

Error Handling in Swift

During code execution, your program may encounter some errors; these
errors are usually handled by using error handling.

While Optionals can use the absence or presence of a value to tell the failure
or success of a function, error handling, by contrast, enables you to know the

root cause of failure, and even allow you to propagate the error to another
part of the program.

A function will throw an error upon seeing an error condition. The function’s
catch will be the one to catch the error and then give an appropriate response.

1. func canThrowhnError () throws |
2. // this function may or may not throw an error
= A |

A function can always indicate that it will be able to throw an error by
inserting the throws keyword in the code declaration. While calling a
function that can throw an error, you will have to prepend the keyword “try”
in the expression.

Swift will automatically propagate an error out of its current scope until the
error is handled by a catch clause.

1. do {

2. try canThrowBAnErrozr()
3. noc errocr was thrown
4, } catch {

5. /f an error was thrown

A do statement will create a new scope, which will normally allow you to
propagate errors to many other clauses.

The codes below show you how to use error handling to actively respond to
different errors;

1. func makeASandwich() throws {
2.1/ ...
3.

4.
5.do {

6. try makeASandwich()
7. eatASandwich()
8. } catch SandwichError.outOfCleanDishes {
9. washDishes()
10. } catch SandwichError.missingIngredients(let
ingredients) {
11. buyGroceries(ingredients)
12. }

In the above case, the makeASandwich() function will throw an error once
there are no clean dishes or if any particular ingredient is missing. Since
the makeASandwich() can actually throw an error, the function call is
wrapped in a try expression. When you wrap the call function in a
do statement, any thrown errors are propagated to the catch clauses provided.

The eatASandwich() function is called if no error is thrown. But if an error is
thrown and it tallies with the SandwichError.outOfCleanDishes instance,
then the function washDishes() will be called. In another way, if an error is
thrown and it tallies with the SandwichError.missingIngredients instance,
then the function buyGroceries(_:) will be called with the
associated [String] value captured by the catch pattern.

Assertions and Preconditions

Assertions and preconditions are routine checks that occur at runtime. They
are primarily used to ensure that an important condition is met before any
code is executed further. The code execution will normally continue if the
Boolean condition in your assertion or precondition evaluates to true. But if
the Boolean condition evaluates to false, the program’s current state is not
valid; code execution will end and the app will stop.

Assertions and preconditions are also used to express any assumptions made
and expectations you have during coding to enable you integrate them as part
of your code. Assertions will also help you to find mistakes and any incorrect
assumptions during app development, and the preconditions will allow you to
detect issues in production.

Assertions and preconditions not only allow you to confirm your expectations

at runtime, but they equally form a useful means of documentation within
your code. You cannot use assertions and preconditions for recoverable errors
or expected errors unlike the error handling. This is due to a fact that a failed
assertion or precondition is indicative of an empty program state and it is not
possible to catch an assertion that has already failed.

It is also worth noting that using assertions and preconditions is not a
replacement for designing code in a way that some invalid conditions will not
arise. However, it is very likely that your app keeps terminating more often
(once an invalid state occurs) when you use assertions and preconditions to
enforce valid state and data. It is always advisable to stop the execution as
soon as you detect an invalid state. This helps to reduce the damage initiated
by that particular invalid state.

One big difference between assertions and preconditions is at what point they
are checked respectively: you check assertion in debug builds while
preconditions are checked in both the debug and production builds. In the
production builds, the condition in the assertion won’t be evaluated. This
literally means that you will be able to deploy as many as possible assertions
during the app development process and it won’t affect production
performance.

Debugging with Assertions

You call the assert(_:_:file:line:) function from the Swift standard library
when you want to write an assertion. You pass an expression that evaluates
to true or false to the function and a special message to be prompted once the
result of the condition is false. For instance:

1. let age = -3

il L

assert {age >= 0,

[

A person's age can't be less than zero.")

Lad

/{ This assertion fails because -3 is not >= (.

In the instance above, the code execution will only continue
if age >= 0 amounts to true, meaning if the value of age is nonnegative. If the
real value of age is actually negative, like the example above,
then age >= 0 will be false, the assertion will fail and the app will be
terminated.

If the condition has already been checked by the code,
the assertionFailure(_:file:line:) function will be used to tell that an assertion
has failed. For instance:

L. 3if age ¥ L0

A%}

print{"¥ou can ride the roller-coaster or the ferris wheel.™)
} elz= if age >= 0 {

print ("You can ride the ferris wheel.")

N ol L

} elze |

=2

aggertionFailure ("A persen's age can't be less than zero.")

F5 ¥

Enforcing Preconditions

Deploy a precondition anytime a condition has the chance to be false, but
must surely be true if you want the code execution to continue. For instance,
a precondition can be used to check whether a subscript is not out of bounds,
or to check whether a valid value has been passed to the function.

A precondition can be written by calling the
precondition(_:_:file:line:) function. You pass an expression that evaluates
to true or false to the function and a special message to prompt once the result
of the condition is false. For instance:

1. // In the implementation of a subscript...

2. precondition({index > 0, "Index must be greater than =zero.")

The preconditionFailure(_:file:line:) function can also be called to show that
a failure has occurred.

CHAPTER TWO

Basic Operators in Swift

An operator, in programming language, can be viewed as a special symbol
that can be deployed to monitor, combine or change values. For instance, the
addition operator (+) can be deployed to combine (add) two different or
similar numbers together e.g let i = 4 + 7, while the logical AND operator
(& &) <can be used to combine two Boolean values, e.g
if enteredPasswordtwice && locktheDevice.

Some of the common operators from familiar programming languages like
Objective-C are also recognized by Swift programming language, though
Swift offers improved capabilities to reduce or completely eliminate common
errors in coding. To prevent the assignment operator (=) from being used
mistakenly when the user means to use the (==) operator, the assignment
operator (=) is not programmed to return any value. In order to prevent
unintended results while working with digits that become smaller or larger
than the value ranges allowable by the type that stores them, the arithmetic
operators (+, -, *, /, % and so forth) usually detect and disable value
overflow. You can access the value overflow behavior if you want by
deploying the Swift’s overflow operator.

Swift has range operators which are not obtainable in the C programming
language, such as a..<b and a...b, and are often used as shortcut for specifying
a range of values.

Terminology
We can have a unary, binary, or ternary operator:

e Unary operators work on a single target (like -a). Unary prefix operators
are displayed right before their target (like !b), while the unary postfix
operators always appear right after a target (like c!).

e Binary operators work on two targets (like 9 + 3) and they are actually
infix since they usually appear in between their two targets.

e Ternary operators work on three targets. Like the C language, the Swift
language has just one ternary operator which is the ternary conditional
operator (a ? b : c).

The values that operators work on are called operands. In the
expression 9 + 3, the + symbol (at the middle) is the binary operator and the
two operands the + symbol is working on are the numbers 9 and 3.

Assignment Operator

When you want to update a value with another, you use the assignment
operator. For instance, the assignment operator (a = b) will update the value
of a with the actual value of b:

l.letx=8
2wvary=5
3.x=y

4./ % is now equal to 8

If the right part of the assignment contains a tuple with multiple values, the
components can be broken into multiple variables or constants at once:

1.let(a, b) =(1, 2)
2./ ais equal to 1, and b is equal to 2

The assignment operator in Swift, unlike the one in C, does not return a value
on its own. For instance, the statement below is not valid;

lifa=b{
2.// This is not valid, because a = b does not return a value.

3.}

This feature will ordinarily prevent the assignment operator (=) from being
utilized mistakenly when the user actually intends to use the equal to operator
(==). Swift avoid mistakes like this by invalidate the “if x = y.”

Arithmetic Operators

The Swift language supports all the four standard arithmetic operators for all
available number types:

e Addition (+)

e Subtraction (-)

e Multiplication (*)

e Division (/)
1.7+ 2 /[equals 10
2.8-3 //equals 5
3.4*%3 /[equals 12

4.8.0/ 2.0 // equals 4.0

The Swift arithmetic operator’s values cannot overflow by default unlike the
C and Objective-C arithmetic operator. You can have access to the value
overflow behavior by using Swift’s overflow operator (such as a &+ b).

The String concatenation also supports the addition operator;

1."hello, " + "world" // equals "hello, world"

Remainder Operator

For remainder operator (c % z), you can calculate how many multiples
of z will fit inside c and the value remaining will be returned. This value is
called the remainder. In some other programming languages, the remainder
operator is called modulo operator.

To carry out 9 % 4, you need to find how many 4s you can find in 9. It is
visible that you can fit two 4s inside 9 and you will have 1 as the remainder.
This will be written in Swift language as;

1.9% 4 // equals 1

To know the answer for ¢ % z, the equation below will be calculated by
the % operator and prompt the remainder as its output:

¢ = (z x some multiplier) + remainder

The “some multiplier” component is actually the largest value of multiples
of z that will fit inside c.

Putting 9 and 4 inside the equation above will yield:

9=(4x2)+1

The same approach is used when finding the remainder for a particular
negative value of a:

1.-9 % 4 // equals -1
Putting -9 and 4 into the above equation will give:
9=0@4x-2)+-1
And you will have a remainder of -1.
The sign of z is ignored for negative numbers of z. This implies that ¢ % z
and ¢ % -z always bring the same output.

Unary Minus Operator

You can deploy the prefix -, called the unary minus operator, to toggle the
sign of a particular numeric value. See below;

1. let four = 4

2. let minusFour = -four // minusFour equals -4

3. let plusFour = -minusFour // plusFour equals 4, or "minus minus
four"

The unary minus operator (-) is usually prepended right before the number it
usually operates on, without inserting any white space.

Unary Plus Operator

The unary plus operator (+) will return the number or value it works on,
without any change:

1. let minusFive = -5
2. let alsoMinusFive = +minusFive // alsoMinusFive equals -5

Although it can appear like the unary plus operator is not really doing
anything; and of course it is not, in the actual sense, but you can deploy the
Unary Plus operator to give symmetry in your Swift code for positive values
while you use the unary minus operator for negative values.

Compound Assignment Operators

Like the C programming language, the Swift language features compound
assignment operators which combine assignment operators (=) with another

operation. One case is the addition assignment operator (+=):

lwvara=1
2.at+=2

3.// ais now equal to 3

The expression a += 2 is the shorthand for a = a + 2. By doing this, the
addition and the assignment have been combined into a single operator that
carries out both of the tasks at the same time.

Comparison Operators
The following comparison operators are supported with Swift;

e Equalto(x==Yy)

e Not equal to (x !=y)

Greater than (x > y)

Less than (x <)

Greater than or equal to (a >=y)
Less than or equal to (x <=)

A Bool value is always returned by each of the comparison operator to tell
whether the statement is true or not;

1.8==8 // true because 8 is equal to 8

2.51=1// true because 5 is not equal to 1

3.5=1// true because 5 is greater than 1

A4.0<2 /f true because 0 isless than 2

5.1>=1// true because 1 is greater than or equal to 1

6.7 <=1 // false because 7 is not less than or equal to 1

Comparison operators found application in conditional statements like the
if statement:

1.let name = "John"

2.if name =="John" {

3.print("hello, John")

4. }else{

S.print("l'm sorry \(name), but | don't recognize you")
6.}

7.// Prints "hello, John", because name is indeed equal to "lohn".

Two Tuples can be compared with each other if they actually have the same
number of values and are of the same type. You compare tuples from left to
right, going from one value at a time, until the comparison is able to find two
unequal values. The two unequal values will be compared and the result will
actually determine the end result of the tuple comparison. If all of the
elements/values are the same, then the tuples are equal. For instance;

1.(1, "apple") < (2, "zebra") // true because 1 is less than 2; "apple" and "zebra" are not
compared

2.(3, "apple") < (4, "bird") // true because 3 is less than 4, and "apple” and "bird" are not
compared.

3.(4, "dog") == (4, "dog") // true because 4 is equal to 4, and "dog" is equal to "dog"

In the above example, you can observe the left-to-right comparison that
happened on the first line. Since 1 is actually less than 2, (1, "zebra") is taken
to be less than (2, "apple"), and it doesn’t matter what other values reside in
the tuple. It doesn’t even matter if "zebra" is not less than "apple"”, since the
comparison has already been determined by the first element of the tuples.
But in a case when you have the first element of the tuples to be the same,
their second elements will be compared — you can see what happened in the
third line.

You will only be able to compare tuples with a specific operator only if you
can apply the operator to each value in the tuples. For instance, as you can
see in the code shown below, you will be able to compare two tuples of
(String, Int) type since you can compare both String and Int values with the
< operator. In another case, you cannot compare two tuples of (String, Bool)
type with the “less than <” operator since you cannot apply the < operator

to Bool values.

1.("blue", -1) < ("purple"”, 1) // OK, evaluates to true

2.("blue", false) < ("purple", true) // Error because < can't compare Boolean values

Note: You will only be able to compare tuples with fewer elements (up to
six) as this is the limit obtainable in the Swift standard library. If you want to
compare tuples that contain about seven or more elements, you will need to
implement the comparison operator by yourself.

Ternary Conditional Operator

Special operator that has three parts is called the ternary conditional
operator and it will usually take the form question ? answerl : answer2. The
ternary conditional operator provides a shortcut that can be used to evaluate
one of two statements based on whether the question is false or true. If
the question is true, the answerl will be evaluated and its value will be
returned. If the question is false, the answer2 will be evaluated and its value
will be returned.

The ternary conditional operator provides shorthand for the below code;

1.if question {
2.answerl
3.} else{
4.answer2

5.}

The case below is one that calculates height for a particular row of table. The
row height is 50 points taller than the content height provided that the row
possess a header, and will be 20 points taller than the content height if the
row lacks a header;

1.let contentHeight = 40

2.let hasHeader = true

3.let rowHeight = contentHeight + (hasHeader ? 50 : 20)
4./f rowHeight is equal to 90

The above example is the shorthand for the code below:

1.let contentHeight =40

2.let hasHeader = true

3.let rowHeight: Int

4.if hasHeader {

5.rowHeight = contentHeight + 50
6.} else{

7.rowHeight = contentHeight + 20
8.}

9./f rowHeight is equal to 90

In the first example, the way the ternary conditional operator was used means
that the rowHeight can actually be set to the correct value on a single line of
code, which is rather more concise than the one deployed in the second
example.

It becomes very easy to decide which one out of the two expressions will be
appropriate. The ternary conditional operator should be used with care,
however. It should not be overused as its conciseness can create hard-to-read
code. Also, do not combine multiple cases of the ternary conditional operator
into a single compound statement.

Logical Operators

The Boolean logic values true and false can be combined or modified by
Logical operators. Just like the C language, the three essential logical
operators are also supported by Swift programming language. The standard
operators include;

e Logical NOT (!a)
e Logical AND (a && b)

e Logical OR (a || b)

Logical NOT Operator

The logical NOT operator (!a) serves to invert a Boolean value to enable
the true becomes false, and the false tending to true.

The logical NOT operator works like a prefix, and usually displays right
before the value it is operating on, without any white space. The logical not
operator (!a) can be read as “not a”, as you can see in the example below;

1.let allowedEntry = false
2.if lallowedEntry {
3.print("ACCESS DENIED")
4.}

5.// Prints "ACCESS DENIED"

The statement if !allowedEntry will be read as “if not allowed entry.” The
line that follows will only be executed if “not allowed entry” is true; meaning
that if allowedEntry is false.

As it was in the example above, you can make your code more readable and
concise when you choose your Boolean constant and variable names
carefully, while you avoid double confusing logic statements or negatives.

Logical AND Operator

For the logical AND operator (a && b), a logical expression is created where
all of the values must be true for the overall expression to equally be true.

If any of the values is false, the whole expression is automatically false. As a
matter of fact, if the value of the first statement is false, the value of the
second statement won’t even be evaluated, since it can no longer make the
whole expression equal to true. This is called short-circuit evaluation.

The examples below examine two Bool values and access is only allowed if
both of the values are true:

1.let enteredDoorCode =true

2.let passedRetinaScan = false

3.if enteredDoorCode &8& passedRetinaScan {
4. print("Welcome!")

S.telse

6.print("ACCESS DENIED")

7.}

8.// Prints "ACCESS DENIED"

Logical OR Operator

The logical OR operator (a || b) is just an infix operator designed from two
adjacent pipe characters. The Logical OR operator can be utilized to make
logical statements where only one of the two values must evaluate to true if
the whole expression must be true.

Just like you can observe in the above Logical AND operator, the short-
circuit evaluation is used by the Logical OR operator to consider its
expressions. If the left part of a Logical OR expression is true, the right part
will not be evaluated, since the outcome of the whole expression cannot be
changed.

In the below example, the (hasDoorKey) which is the first Bool value is false,
but the (knowsOverridePassword) which is the second value is true. Since
one value is true, the whole expression will evaluate to true, and access will
be allowed:

1.let hasDoorKey = false

2.let knowsOverridePassword = true

3.if hasDoorKey | | knowsOverridePassword {
4. print("Welcome!")

S.lelse{

6.print{"ACCESS DENIED")

e

B.// Prints "Welcome!"

Combining Logical Operators

Longer compound expressions can be created by combining multiple logical
operators;

1.if enteredDoorCode && passedRetinaScan || hasDoorkKey || knowsOverridePassword {
2.print{"Welcomel!")
3.}else{

4.print("ACCESS DENIED")
5.}

6.// Prints "Welcome!"

The above example deploys multiple && and || operators to make a longer
compound expression. However, the && and || operators still work on only
two values, so there are three smaller expressions chained together. The
above example can thus be read as:

If the correct door code has been entered and it passed the retina scan, or if
there is a valid door key, or if the emergency override password is known,
then allow access.

From the values of enteredDoorCode, hasDoorKey and passedRetinaScan,
the first two subexpressions are false. The whole compound expression,
however, still amounts to true since the emergency override password is
known.

The Swift logical operator && and || are actually left-associative, this means
that compound expressions that have multiple logical operators will evaluate
the leftmost subexpression.

Explicit Parentheses

In order to allow a complex statement to be easy to follow and read, it is
often useful to insert parentheses when they are not strictly needed. You can
make the intention of the door access case described above explicit by putting
parentheses in the first part of the compound statement.

1.if (enteredDoorCode && passedRetinascan) || hasDoorKey || knowsOverridePassword {
2.print("Welcome!")

3.jelseq

4.print("ACCESS DENIED")

5.}

6./ Prints "Welcome!"

The parentheses make it obvious that the first two values are taken as part of
a separate possible state in the overall logic. The result of the compound
statement does not change, but the whole intent of the statement is clear to
the reader. Readability over brevity; parentheses provide clear intention of
your statement.

Strings and Characters

A string is a chain of characters, like the "hello, world" or "albatross".
String types are used to represent Swift strings. There are various ways of
accessing the contents of a String.

Working with texts in your code with a fast and Unicode-compliant way is
made possible by the Swift’s String and Character types. The syntax for
creating and manipulating string is readable and lightweight, with a string
literal syntax similar to the one in C. String concatenation can be done with
the + operator, and managing string mutability is possible by selecting
between a variable and a constant, just like most other values in Swift.
Strings can also be used to add variables, constants, expression and literals
into longer strings. This process is known as string interpolation. With this,
creating custom value for storage, display and printing becomes easy.

Despite this syntax’s simplicity, Swift’s String type provides a fast, modern
string implementation. Every string is made up of encoding-independent
Unicode characters, and gives support for getting those characters in various
Unicode representations.

String Literals

Predefined String values can be included within your code as string literals.
Sequences of characters flanked by double quotation marks (") are called
string literals.

Deploy a string literal as a base value for a variable or constant:

1. let someString = "Some string literal value"

You can see that Swift infers a type of String for the someString constant
stipulated in the above example because it is initialized with a string literal
value.

Multiline String Literals
A multiline string literal is a string that covers many lines.

1.let quotation =
2.The Red goat wears his spectacles. "Where shall | start,
3.Allow me your Majesty?" he begged.

4.

5."Start at the beginning,” the Queen said gravely, "and go on
6.till you reach the end; then stop."

:

A multiline string literal has all of the lines between the opening and closing
quotation marks. The string starts on the first line just after the opening
quotation marks (""") and terminates on the line just before the closing
quotation marks, which implies that neither of the strings indicated below
begin or stop with a line break:

let singlelineString = "These are the same.”
let multilineString = """
These are the same.

OO TR S T

When a source code has a line break in a multiline string literal, the line break
will equally appear in the string’s value. If you plan to deploy line breaks to
make your source code clear and easy to read, but you do not plan to have the
line breaks to be part of the string’s value, just put a backslash (\) at the end
of those lines:

1.let softWrappedQuotation = """
. The Red goat wears his spectacles. "Where shall | start,
. Allow me your Majesty?" he begged.

. till you reach the end; then stop."

2
3
a
5. "Startat the beginning,” the Queen said gravely, "and go on
b
)

To have a multiline string literal that starts or terminates with a line feed, put
a blank line as your first or last line. For instance:

1.let lineBreaks="""

2.
3.This string starts with a line break.

4.1t also ends with a line break.
G
5.”“”

Special Characters in String Literals

The following special characters are often included in string literals;

e The escaped special characters \O (null character), \t (horizontal tab), \\
(backslash), \n (line feed), \" (double quotation mark), \r (carriage return)
and \' (single quotation mark)

e An arbitrary Unicode scalar value, compiled as \u{n}, where n is actually
a 1-8 digit hexadecimal number.

The below code shows four cases of these special characters.

The wiseWords constant has two escaped double quotation marks.

The dollarSign, blackHeart, and sparklingHeart constants show the Unicode

scalar format:

1.let wiseWords ="\"Imagination is more important than knowledge\" - Einstein”
2.// "Imagination is more important than knowledge" - Einstein

3.let dollarSign = "\u{24}" // §, Unicode scalar U+0024

4.let blackHeart = "\u{2665}" // sUnicode scalar U+2665

5.let sparklingHeart = "\u{1F496}" // B, Unicode scalar U+1F496

Because multiline string literals deploy three double quotation marks instead
of one, you can put a double quotation mark (") inside a multiline string
literal without necessarily escaping it. You will be able to put the text """ in a
multiline string by escaping at least one of the quotation marks. For instance:

1.let threeDoubleQuotationMarks = "™

2.Escaping the first quotation mark\"""
3.Escaping all three quotation marks \"\"\"

d-. e

Initializing an Empty String
An empty String value can be created to be the starting point for creating a

longer string by either assigning an empty string literal to a particular
variable, or starting a new String case with initializer syntax:

1 var emptysString = " {/f empty string literal
2 var anctherEmptyString = String() // initializer syntax
3 /[these two strings are both empty, and are equivalent to each other

You can know whether a String value is actually empty by checking the
string’s Boolean isEmpty property:

1. if emptyString.isEmpty {
2. print("Nothing is here to display")
3.}
4. // Prints "Nothing is here to display"
String Mutability
You can indicate if a particular String can be mutated or modified by

assigning the string to a variable (where you will be able to modify it), or
assigning it to a constant (where modification is not possible):

1.var variable5String = "Dog"
2.variableString +=" and cat"

3.// variableString is now "Dog and cat"

4.

5.let constantString = "favorite"
6.constantString += " and another favorite"

7.// this reports a compile-time error - a constant string cannot be modified

Working with Characters

You can use the for-in loop while iterating over a string to get the individual
Character values for the String.

. for character in "Dog! @€ " {
. print(character)

)

4./ D

5.//0

6./ g

7.1

8./ @@

W N =

Alternatively, a stand-alone Character variable or constant can be created
from one character string literal when you provide a Character type
annotation:

1. let exclamationMark: Character = "!"

String values can be built when you pass an array of Character values as an
argument to the string’s initializer:

1. let catCharacters: [Character] = ["C", "a", "t", "!", " @€ "]
2. let catString = String(catCharacters)

3. print(catString)
4. // Prints "Cat!"

Concatenating Strings and Characters

String values can be concatenated (added together) by using the addition
operator (+) to form a new String value:

1. let string1 = "hi"

2. let string2 =" John"

3. var welcome = string1 + string?2
4. // welcome is now "hi John"

You can equally append another String value to a String variable that is
already existing by using the addition assignment operator (+=):

1. var instruction = "Watch over"
2. instruction += string?2
3. // instruction now equals "Watch over John"

String Interpolation

String interpolation is a method that can be used to create a new String value
from a mix of variables, constants, expressions and literals by putting their
respective values inside a string literal. String interpolation can be deployed
in both the single-line and multiline string literals. Each object inserted into
the string literal will be wrapped inside a pair of parentheses and then a
backlash (\) is inserted before the object:

1. let multiplier = 4

2. let message = "\(multiplier) times 2.0 is \(Double(multiplier) *
2.0)"

3. // message is "4 times 2.0 is 8.0"

In the case above, the content of multiplier is put into a string literal as \
(multiplier). This placeholder was then substituted with the exact value
of multiplier when the string interpolation is solved to make an actual string.

The value of multiplier is equally part of a larger statement later in the string.
This statement calculates the value of Double(multiplier) * 2.0 and puts the
result (8.0) inside the string. In this instance, the statement is written as \

(Double(multiplier) * 2.0) when it is added inside the string literal.

You can use string interpolation inside a string that deploys extended
delimiters by matching the number of number signs immediately after the
backslash to the number of number signs just at the start and end of the
string. For instance:

1. print(#"6 times 7 is \#(6 * 7)."#)
2. // Prints "6 times 7 is 42."

The expressions inside the parentheses within an interpolated string cannot
have an unescaped backslash (\), a line feed or a carriage return; but they can
have other string literals.

Unicode

Unicode is an approved standard for processing, representing and encoding
text in different writing systems. It allows users to process and represent, in a
standardized form, about almost any character from any language, and to also
read and write those characters to and from an external source like the web
page or a text file. The String and Character types used in Swift are
essentially Unicode-compliant.

Unicode Scalar Values

Looking at what is happening behind the scene; Unicode scalar values are
used to build Swift’s native String type. A Unicode scalar value is actually a
special 21-bit number for a modifier or character, such as
U+1F425 for FRONT-FACING BABY CHICK or
U+0061 for LATIN SMALL LETTER A ("a").

It is not all of the 21-bit Unicode scalar values that are designated to a
particular character—some scalars are actually reserved for future use in the
UTF-16 encoding. A scalar value that has been assigned to a character will
also have a name, just like the LATIN SMALL LETTER A and FRONT-
FACING BABY CHICK in the above example.

Counting Characters

The count property of a string can be used to recover a count of
the Character values in the string.

1. let unusualMenagerie = "Koala, Snail, Penguin, Dromedary"

2. print("unusualMenagerie has \(unusualMenagerie.count)
characters")

3. // Prints "unusualMenagerie has 40 characters"

String’s modification and concatenation may not necessarily affect the
character count of a string due to the Swift’s usage of extended grapheme
clusters for Character values.

For instance, if you prompt a new string with a particular four-character word
like cafe, and then insert a COMBINING ACUTE ACCENT (U+0301) at the
end of the string, the string’s result will still have 4 as the character count, but
the fourth character will be é and not e:

1. var word = "cafe"
2. print("the number of characters in \(word) is \(word.count)")
3. // Prints "the number of characters in cafe is 4"

4.
5. word += "\u{301}" // COMBINING ACUTE ACCENT, U+0301

6.
7. print("the number of characters in \(word) is \(word.count)")
8. // Prints "the number of characters in café is 4"

Accessing and Modifying a String

A string can be accessed or modified through the string’s properties and
methods or even by deploying subscript syntax.

String Indices

Each String value possesses an associated index type, String.Index, which
actually corresponds to the location of each Character in the string.

As discussed above, different characters can demand different levels of
memory to store, so if you want to know which Character is located at a
particular position, you need to iterate over each Unicode scalar from the
beginning or from the end of that String. For this exact reason, you cannot
index Swift strings by integer values.

The startindex property can be used to access the exact position of the
first Character of a String. The endIndex property is the place just after the
last character in a particular String. Hence, the endIndex property is really not
a valid argument to the subscript of a string. The startindex and endIndex will
be equal when a String is empty

You will be able to access the indices just before and just after a specific
index by deploying the index(before:) and index(after:) methods of String. If
you plan to access an index that is farther away from the specific index, you
can deploy the index(_:offsetBy:) method rather than calling one of these
methods many times.

The subscript syntax can be wused to access the Character at a
specific String index.

let greeting = "Guten Tag!"
gresting[greeting.startIndex]

f/ G

greeting[greeting.index({before: greeting.endIndex)]
T

greeting[greeting.index(after: greeting.startIndex)]
/f u

let index = greeting.index{greeting.startIndex, offsetBy: 7)

[B RS S (O, B - SO WY S Ty 1

greeting[index]
f/f a

=
&

You will receive a runtime error if you try to access an index outside of a
specific string’s range or to just access Character at an index outside of a
string’s range.

1 for index in greeting.indices {

2 print{"\({greeting[index]) ", terminator: "")
30}

48 /f Prints "G uten Tag!l"”

You can also use the indices property to view all the indices of individual
characters in a string.

1.for index in greeting.indices {
2.print("\(greeting[index]} ", terminator: "")
3.

4./f{Prints"Goodmornlng!"

Inserting and Removing

To put a single character into a string at a specific index, you can deploy
the insert (:at:) method, and you can also insert the contents of another string
at a specified index by using the insert(contentsOf:at:) method.

var welcome = "hello”

welcome.insert("!™, at: welcome.endIndex)

// welcome now eguals "hello!”

L 5 I A Y o N

welcome. insert{contentsOf: there™, at: welcome.index({before:

welcome.endIndex))

1]

/f welcome now equals "hello there!”

You can remove a single character from a string at a specific index by using
the remove(at:) method, and you can also remove a substring at a specific
range by using the removeSubrange(_:) method:

1. welcome.remove(at: welcome.index(before: welcome.endIndex))
2. // welcome now equals "hello there"

3.
4.let range = welcome.index(welcome.endIndex, offsetBy: -6)..

<welcome.endIndex
5. welcome.removeSubrange(range)
6. // welcome is now "hello"

CHAPTER THREE
Classes and Objects in Swift

Just like you see it in languages like C++, Objective-C, Java and few other
languages, you will be able to define templates for your objects by using
Classes. In Swift, Classes take the format

class Vehicle {

}

Classes feature both methods and properties. Variables that are core part of a
class are called properties while functions that are essential part of a class
are called methods.

In the example below, the Vehicle class has two properties: Color which is
an optional

String, and maxSpeed which is an Int. The way Property is declared is just
about the same as the way variables are declared in other codes

class Vehicle {

var color: String?
var maxSpeed = 80

}

Methods in a particular class look exactly the same as functions just
anywhere else. Code that resides in a method can explore the properties of a
class by using the keyword self, which talks about the object that is running
the code currently:

class Vehicle {

var color: String?
var maxSpeed = 80

func description() -> String {
return "A \(self.color) vehicle”

}

func travel() {
print{"Traveling at \(maxSpeed) kph")
}

The self keyword can be omitted if it is visible that the property is actually
part of the current object. In the example above, you can see that description
deploys the keyword self, while travel does not. When a class has been
defined, instances of the class (called an object) can be created which you can
work with.
For instance, if you want to define an instance of the Vehicle class, you will
define a variable and call the initializer of the class. Once you have done that,
it becomes very easy to work with the class’s properties and functions;

var redVehicle = Vehicle()

redVehicle.color = "Red"

redvehicle.maxSpeed = 96

redVehicle.travel() // prints "Traveling at 96 kph"
redVehicle.description() // = "A Red vehicle”

Initialization and Deinitialization

A distinct method called initializer is called whenever an object is created in
the Swift language. The method that you deployed to set up the object’s
initial state is the initializer and it is usually named init.

There are two types of initializers in Swift; designated initializers and
convenience initializers. A

designated initializer helps you set up all the things required to use an object;
default settings are often used where necessary. A convenience initializer, as
the name implies, allows convenient setting up of the instances by allowing
more details in the initialization process. As part of its setup, a convenience
initializer needs to call the designated initializer.

In addition to initializers, codes can be run when removing an object using a
method called deinitializer, named deinit. This runs just when the object’s
retain count has dropped to zero and it is always called before removing the
object from memory. This is the final chance for your object to carry out any
necessary cleanup before going away permanently.

class InitAndDeinitExample {
// Designated (i.e., main) initializer
tnit () {
print("I've been created!")
1
J/ Convenience initializer, required to call the
J/ designated initializer (above)
convenience init (text: String) {
self.init() // this is mandatory
print{"I was called with the convenience initializer!"’
1
// Deinitializer
deinit {
print("I'm going away!")
1
1

var example : InitAndDeinitExample?

// using the designated initializer
example = InitAndDeinitExample() // prints "I've been created!'
example = nil // prints "I'm going away"”

// using the convenience initializer

example = InitAndDeinitExample(text: "Hello")

// prints "I've been created!"” and then

// "I was called with the convenience initializer”

Nil can also be returned by an initializer. This can be found applicable when
the initializer is not able to construct an object. For instance, the NSURL
class has an initializer that takes a string and converts such string into a URL;
if the string is not a valid URL, the initializer will return nil. If you want to
create an initializer that will be able to return nil—also known as a failable
initializer— you need to put a question mark right after the init keyword, and
nil will be returned if the initializer decides that it cannot successfully
construct the object:

// This is a convenience initializer that can sometimes fail, returning nil
// Note the ? after the word 'init’
convenience init? (value: Int) {

self.init()

if value = 5 {
// We can't initialize this object; return nil to indicate failure
return nil

}

When a failable initializer is used, an optional will always be returned;

var failableExample = InitAndDeinitExample(value: &)

// = nil

Properties

Data in Classes are stored in properties. Properties, as discussed before, are
constants or variables that are attached to instances of classes. The code
snippet below shows how you can access properties that you have added to
class;

class Counter {
var number: Int = 0

}
let myCounter = Counter()
myCounter.number = 2

However, as objects become more complex, there can be a problem in the
system. If you wanted to use engines to represent vehicles, you would need
to add a property to the Vehicle class; however, this would mean that all
Vehicle instances would have this property, even if they never need one. To
make things better organized, it is actually better to move properties that are
specific to a subset of your objects to a new class that inherits properties from
another.

Inheritance

When you define a class, you can create one that inherits from another. When
a class inherits from another (called the parent class), it incorporates all of its
parent’s functions and properties. In Swift, classes are allowed to have only a

single parent class. This is the same as Objective-C, but differs from C++,
which allows classes to have multiple parents (known as multiple
inheritance). If you plan to create a class that inherits from another class, you
will need to put the name of the class (the one you are inheriting from) right
after the name of the class you are creating, like the example below:

class Car: Vehicle {

var engineType : String = "v&"

}

Classes that inherit from other classes can usually override functions in their
parent class. This depicts that you can create subclasses that will inherit most
of their functionality, but can specialize in certain areas. For instance, the Car
class features an engineType property; this property will only be featured by
only Car instances. To override a function, you will need to re-declare the
function in your subclass and then add the override keyword to let the
compiler know that you are not creating a method accidentally with the same
name as the one in the parent class. In an overridden function, it is usually
very useful to call back to the parent class’s version of that function. You can
do this through the super keyword, which lets you get access to the
superclass functions:

class Car: Vehicle {
var engineType : String = "v8"

// Inherited classes can override functions
override func description() -= String {
let description = super.description()

return description + ", which is a car’

Observers

When you are working with properties, you may normally want to run some
code whenever there is a change in property. To support this, Swift will
actually let you add observers to your properties. Observers are small chunks
of code that can run just before or after the value of a property. To create a

property observer, simply add braces right after your property and add
willSet and didSet blocks. These blocks each get passed a parameter—
willSet, which is called before the property’s value changes, is given the
value that is about to be set, and didSet is given the old value:
class PropertyObserverExample {
var number : Int = @ {

willSet(newNumber) {
print{"About to change to \(newNumber)"})

}
didSet{oldNumber) {

print("Just changed from \(oldNumber) to \(self.number)!")
¥

Protocols

A protocol can be imagined as a list of requirements for a particular class.
When you define a

protocol, you are creating a list of properties and methods that can be
declared by classes. A protocol seems very much like a class, except that you
don’t need to provide any actual code—you just define what kinds of
properties and functions exist and how they can be accessed. For instance, if
you plan to have a protocol that describes any object that can blink on and
off, you could use this:

protocol Blinking {

// This property must be (at least) gettable
var isBlinking : Bool { get }

// This property must be gettable and settable
var blinkSpeed: Double { get set }

// This function must exist, but what it does is up to the implementor
func startBlinking(blinkSpeed: Double) -> Vvoid

}

Once a protocol has been created, you can then create classes that conform to
a protocol. When a class conforms to a protocol, it is effectively promising to
the compiler that it implements all of the properties and methods listed in that
protocol. It is also allowed to have more than one protocol. To proceed with
this example, you can create a particular class called Light that uses the

Blinking protocol. Remember, the only job of a protocol is specifying what a
class can do—the class itself is the one that is actually responsible for
determining how it does it:

class TrafficLight : Blinking {
var isBlinking: Bool = false

var blinkSpeed : Double = 0.8

func startBlinking(blinkSpeed : Double) {
print("I am a traffic light, and I am now blinking")

isBlinking = true

// We say "self.blinkSpeed" here, as opposed to "blinkSpeed”,
// to help the compiler tell the difference between the
// parameter 'blinkspeed' and the property

self.blinkSpeed = blinkSpeed

}

class Lighthouse : Blinking {
var isBlinking: Bool = false

var blinkSpeed : Double = 0.8

func startBlinking(blinkSpeed : Double) {
print("I am a lighthouse, and I am now blinking")
isBlinking = true

self.blinkSpeed = blinkSpeed

}

One advantage of using protocols is that Swift’s type system can be used to
refer to any object that conforms to a given protocol. This is good because
you have the chance to specify that you only care about whether an object
conforms to the protocol—the specific type of the class doesn’t matter since
we are using the protocol as a type:

var aBlinkingThing : Blinking
J/ can be ANY object that has the Blinking protocol

aBlinkingThing = TrafficLight()

aBlinkingThing.startBlinking(4.0) // prints "I am now blinking"
aBlinkingThing.blinkSpeed // = 4.0

aBlinkingThing = Lighthouse()

Extensions

In Swift, you can extend existing types and add further methods and
computed properties. This is very useful in two situations:

* You are working with a type written by another person, and you plan to add
functionality to it but either you don’t have access to its source code or you
just don’t want to mess around with it.

* You are working with a type that you wrote, and you want to improve its
readability by dividing up its functionality into different sections.

With Extensions, you can carry out both of these options easily. In Swift,
you can extend any type—that is, you can extend both classes that you write,
as well as built-in types like Int and String. You will be able to create an
extension by using the extension keyword and then follow it by the name of
the type you want to extend. For instance, to add methods and properties to
the built-in Int type, you can do this:

extension Int {
var doubled : Int {
return self * 2

}
func multiplyWith{anotherNumber: Int) -= Int {

return self * anotherNumber

}
}

Extension can also be used to make a type conform to a protocol. For
instance, you can make the Int type conform to the Blinking protocol
described earlier:

extension Int : Blinking {
var isBlinking : Bool {
return false;

}
var blinkSpeed : Double {
get {
return 0.0;
1
set {

// Do nothing

}
}

func startBlinking(blinkSpeed : Double) {
print{("I am the integer \(self). I do not blink.")

}
}
2.1isBlinking // = false
2.startBlinking(2.8) // prints "I am the integer 2. I do not blink."

Access Control

There are three categories of access control recognized by Swift and they all
determine the kind of information that will be accessible to different part of
the application;

- Public: Any part of the app can access public classes, properties and
methods. For instance, all of the classes in the UIKit that you use to
build iOS apps are actually public.

- Internal: Internal entities (data and methods) will only be accessible to
the module in which they are only defined. A module is just like an
application, library, or framework. This is the reason you cannot access
the inner workings of UIKit—it is defined as internal to the UIKit
framework. Internal access control is actually the default level of
access control: meaning that if you fail to specify the access control
level, it will be assumed to be internal.

- Private: Private entities are only accessible to the file in which it is
declared. This means that you can actually create classes that hide their
inner workings from some other classes that are in the same module,
which helps to keep the amount of surface area that those classes
expose to each other to a minimum.

The kind of access control that a method or property can have depends on the
access level of the class that it is contained in. You cannot make a method
more accessible than the class in which it is contained. For instance, you
can’t define a private class that has a public method:

public class AccessControl {

}

All methods and properties are essentially internal by default. You can
explicitly define a member as internal if you want, but it isn’t necessary:

// Accessible to this module only
// 'internal' here is the default and can be omitted
internal var internalProperty = 123

The exception is for classes defined as private—if you don’t declare an
access control level for a member, it will be set as private, not internal. It is
impossible to specify an access level for a member of an entity that is more
open than the entity itself.

When you declare a method or property as public, it becomes visible to
everyone in your app:

// Accessible to everyone
public var publicProperty = 123

If you declare a method or property as private, it is only accessible from
within the source file in which it is declared:

// only accessible in this source file
private var privateProperty = 123

Operator Overloading

An operator is actually a function that takes one or two values and then
returns a value.

Operators can be overloaded just like any other functions. For instance, you
can represent

the + function like this:

func + (left: Int, right: Int) -= Int {
return left + right
}

Swift allows users to define new operators and overload existing ones for
their new types, which implies that if users have a new type of data, they can
operate on that data using both existing operators, as well as new ones which
they invent by themselves. For instance, imagine you have an object called
Vector2D, which stores two floating point numbers:

class Vector2D {

var X : Float
var y : Float

init (x : Float, y: Float) {
self.x = x
self.y = y

Generics

Swift is a pure statically typed language. This implies that the Swift compiler
will need to definitively comprehend what type of information your code is
actually dealing with. This means that you cannot pass a string to code that
expects to deal with a date (which is something that can happen in Objective-
C!). However, this rigidity robes users of some flexibility. It is actually
annoying to have to write a chunk of code that does some work with strings,
and another that works with dates. This is where generics are actually
applicable. Generics enable you to write code that does not really need to
know precisely what information it is exactly dealing with. An example of
this kind of use is in arrays: they don’t actually do any work with the data
they store, but instead just store it in an ordered collection. Arrays are, in fact,
generics. To make a generic type, you will name your object as usual, and
then specify any generic types between angle brackets. T is the traditional
term used, but you can put anything you like. For instance, to create a generic
Tree object, which has a value and any number of child Tree objects, you
would carry out the following;

class Tree <T= {
J/ 'T'" can now be used as a type inside this class

J/ 'value' is of type T
var value : T

// 'children' is an array of Tree objects that have
// the same type as this one
private (set) var children : [Tree <T=] = []

// We can initialize this object with a value of type T
init(value : T) {
self.value = value

}

CHAPTER FOUR

Introduction to Swift’s Functions

Functions are defined as self-contained pieces of code that carry out a certain
task. You assign a function a particular name that shows what it does, and the
name will be used to “call” the function to carry out its assigned task when
needed.

Swift’s unified function syntax is actually flexible enough to convey anything
from a very simple C-style function (without any names of parameters) to a
rather difficult Objective-C-style method (that has arguments and names
labels for each parameter).

Every function in the Swift language is associated with a type, which is made
up of the function’s return types and parameter types. This type can be used
just like any other type in Swift, making it especially very easy to pass one
function to another as parameters, and to also return functions from functions.
You can also write a function inside another function to be able to capture

important functionality within a particular nested function scope.

Defining and Calling Functions

By defining a function, you will be able to optionally define one or more
typed, named values taken by the function as input (also known as
parameters). It is also possible to optionally define the type of value that will
be passed back as the output by the function when it is completed; this is
known as return type.

Every function has a function name describing the tasks that the function is
performing. To use a particular function, you will call the function with the
name and pass it arguments (input value) that correspond to the type of the
function’s parameter list.

The function in the case below is called greet(person:), since that is the
action it is performing — it inputs the name of a person and returns a greeting
for the person. To get around this, you will define one input parameter — a
string value called person — and a return string called that will contain the
greetings for the person;

1. func greet(person: String) -> String {
2. let greeting = "Hello,” + person + "!"
3. return greeting

4.}

All of the information is rolled up into the definition of the function, which is
normally started (prefixed) with func as the keyword. The return arrow -> (a
hyphen with a right angle bracket) is used to indicate the return type of the
function.

The definition explains what the function is doing, what the function should
receive, and what the function will return when it is completed. The
definition makes it especially very easy to call the function ambiguously from
anywhere in the code;

1. print(greet(person: "Anna"))
2. // Prints "Hello, Anna!"
3. print(greet(person: "Brian"))
4. // Prints "Hello, Brian!"

The greet(person:) function is called by passing the function a String value
right after the person argument label, such as greet(person: "Anna"). Since
the function actually returns a String value, you can wrap the greet(person:)
in a call to the print(_:separator:terminator:) function to be able to print
that string and examine its return value, as displayed above.

The body of the greet(person:) function begins by defining a particular
new String constant named greeting and setting the constant to a simple
greeting message. The return keyword is then used to pass the greetings out
the function. When you check the line that says return greeting, you will see
that the function ended its execution and the current value of greetings was
returned.

The greet(person:) function can be called multiple times, and each time with
different input values. The above case examines what happens if it is called
with an input value of "Anna", and then an input value of "Brian". A tailored
greeting was returned by the function in each of the cases.

The return message and the message creation can be combined into a single
line to make the body of the function shorter;

1. func greetAgain(person: String) -> String {
2. return "Hello again, " + person + "!"

3.}

4. print(greetAgain(person: "Anna"))

5. // Prints "Hello again, Anna!"

Function Parameters and Return Values

Return values and Function parameters are very flexible in the Swift
programming language. Anything can be defined right from a very simple
utility function that has a single unnamed parameter to a complex function
with parameter names that are expressive and different parameter options.

Functions without Parameters

You don’t need functions to define input parameters. The case below is a
function without any input parameter which always output the same message
anytime it is called;

1. func sayHelloWorld() -> String {
2. return "hello, world"

3.}

4. print(sayHelloWorld())

5. // Prints "hello, world"

The function definition still requires parentheses right after the name of the
function, even though it does not take parameters. The name of the function
is equally followed by an empty pair of parentheses when it is called.

Functions with Multiple Parameters

Functions with multiple input parameters are written inside the parentheses of
the function and then separated by commas.

The name of a particular person is taken by the function and determines
whether the person has been greeted (input) and then returns a greeting for
the person;

1. func greet(person: String, alreadyGreeted: Bool) -> String {
2. if alreadyGreeted {

3. return greetAgain(person: person)

4. } else {

5. return greet(person: person)

6. }

7.}

8. print(greet(person: "Tim", alreadyGreeted: true))

9. // Prints "Hello again, Tim!"

The greet(person:alreadyGreeted:) function can be called by passing it both
a String argument value tagged person and also a Bool argument value
tagged alreadyGreeted in parentheses, separated by commas. Note that this
function is different from the greet(person:) function you saw earlier.
Although both of the functions contain names that start with greet,
the greet(person:alreadyGreeted:) function actually takes two arguments
while the greet(person:) function takes just one.

Function Argument Labels and Names of

Parameter .

A parameter name and label for an argument are associated with each
function’s parameter. You use the argument label when you want to call a
function with each argument put in the call function together with its
argument label before it. The function’s implementation is done with the
name of the parameter. Parameter, by default, uses their parameter name as
the argument label.

func someFunction(firstParameterName: Int, secondParameterName: Int) {
// In the function body, firstParameterName and secondParameterName
{/ refer to the argument values for the +irst and second parameters.

¥

someFunction{firstParameterName: 1, secondParameterName: 2)

¥ B N ST N

All parameters should be represented with unique names. Although, multiple
parameters can have the same argument label, but a unique argument label
will affect your code’s readability.

Specifying Argument Labels

An argument label is often expressed before the name of the parameter,
separated by a space.

1 func someFunction{argumentlLabel parameteriame: Int) {

2 {f In the function body, parameterName refers to the argument value
3 {{ for that parameter.

4 B

The example below is another variant of the greet(person:) function that takes
the name and hometown of a person and then outputs a greeting;

func greet{person: String, from hometown: String) -» String {

return “Hello ‘“(person)! Glad you could visit from ‘(hometown}."

h

print{greet(person: "Bill"™, from: "Cupertino™)})

[O A Y S

// Prints "Hello Bill! Glad you could wisit from Cupertino.™

When you use an argument label in your function, your function can be
called in a sentence-like and expressive manner, while still giving a body of
function that is readable and clear in purpose.

Omitting Argument Labels

In case you do not plan to have an argument label for a particular parameter,
simply put an underscore (_) in place of an argument label for the particular
parameter.

func someFunction(_firstParameterName: Int, secondParameterName: Int) {
{/{ In the function body, firstParameterName and secondParameterName
{f refer to the argument values for the first and second parameters.

I

someFunction(1l, secondParameterame: 2)

LY 3 B - ¥ T

If there is an argument label for a parameter, you must label the argument
when you call the function.

Default Parameter Values

You will be able to define a default value for a particular parameter in a
function when you assign a value to that parameter after the parameter’s type.
If you have defined a default value, the parameter can be omitted when you
are calling the function.

| func someFunction({parameterWithoutDefault: Int, parameterWithDefault: Int =
12y f
/f If you omit the second argument when calling this function, then
/{ the value of parameterWithDefault is 12 inside the function body.
}

someFunction(parameterWithoutDefault: 3, parameterWithDefault: &) //

[, TR - N SR]

parameterWithDefault is 6

& someFunction{parameterWithoutDefault: 4) // parameterWithDefault is 12

Parameters that don’t have default values should be placed at the start of a
function’s parameter list, just before those parameters with default values.
The parameters without default values are often more important to the
meaning of the function—it becomes easier to notice that the function is
being called when you write them first and it doesn’t matter whether any

parameter has been omitted or not.

Variadic Parameters

These are parameters that take 0 or more values of a specific type. The
variadic parameter is used to indicate that you can pass a varying number of
input values to the parameter when the function is called. The variadic
parameters can be written by putting three period characters (...) just after the
type name of the parameter.

The values you passed to a variadic parameter will be made available as an
array of the appropriate type within the function’s body. For instance, a
variadic parameter with numbers as a name and Double... as the type will be
made available within the function’s body as a constant array
named numbers of type [Double].

The case below finds the arithmetic mean (otherwise called the average) for a
list of numbers of any length:

1 func arithmeticMean(_ numbers: Double...) -»> Double {

2 var total: Double = 8

3 for number in numbers {

4 total += number

5 }

B return total / Double(numbers.count)

ol

8 arithmeticMean(l1, 2, 3, 4, 5)

g /f returns 3.8, which is the arithmetic mean of these five numbers

1@ arithmeticMean(3, 8.25, 18.75)

11 ff returns 1@.8, which is the arithmetic mean of these three numbers

Note that it is possible for a function to have at most one variadic parameter.
In-Out Parameters

By default, function parameters are always constants. You will often get a
compile-time error when you try to change a function’s value from within the
function’s body. What this means is that it is not possible to change the
values for parameters mistakenly as you will always get an error. If you want
to modify a parameter’s value with a function, and you want to let the
changes persist even after the function call has finished, you just define the

parameter as an in-out parameter instead.

An in-out parameter can be written when you place the inout keyword just
before a parameter’s type. An in-out parameter usually has a value that is
passed in to the function, the value is modified by the function, and it is then
passed back out of the function to substitute the original value.

Only a variable can be passed as the argument for an in-out parameter. A
literal value or a constant value cannot be passed as the argument since it will
be difficult to modify literals and constants. While passing a variable as an
argument to an in-out parameter, you will put an ampersand (&) right before
the name of the variable. The ampersand will show that it can be modified by
the function. It is not possible for in-out parameters to have default values
and you cannot also mark a variadic parameter as an in-out.

The case below is a case of a function called swapTwolnts(_:_:), with two in-
out integer parameters named a and b:

1 func swapTwoInts(a: inout Int, b: inout Int) {
2 let temporaryA = a

3 a-=~>b

4 b = temporaryi

5

¥

The swapTwolnts(_:_:) function is there to swap the value of b into a, and
that of a into b. The function is able to perform this swap by storing the actual
value of a in a temporary constant named temporaryA, assign the value
of b to a, and then assign temporaryA to b.

The swapTwolnts(_:_:) function can be called with two variables of
type Int in order to swap their values. Note that there is an ampersand before
the names of somelnt and anotherInt while passing them to
the swapTwolnts(_:_:) function:

var somelnt = 3
var anotherInt = 187
swapTwoInts{&someInt, &anotherInt)

print("someInt is now ‘\(someInt), and anotherInt is now \{anotherInt)")

[5 O - S ¥ S

ff Prints "someInt is now 187, and anotherInt is now 3"

The example above depict that the original values
of somelnt and anotherInt have been modified by
the swapTwolnts(_:_:) function, even though they were initially defined
outside of the function.

Function Types

Every function is associated with a specific function type, consisting of the
return type and the parameter types of the function.

For instance:

func addTwoInts{ a: Int, _b: Int) -> Int {
return a + b

1
2
311

4 | func multiplyTwoInts(a: Int, _b: Int) -> Int {
5 return a * b

B

¥

Two simple mathematical functions named addTwolnts and multiplyTwolnts
were defined by the above example. Each of these functions take
two Int values, and then return an Int value, which is actually the yield of
carrying out an appropriate mathematical operation.

The type of these two functions is (Int, Int) -> Int. read as:

“A function with two parameters, both of type Int, and that returns a value of
type Int.”

The case below is another example, for a function with no parameters or
return value:

1. func printHelloWorld() {
2. print("hello, world")

3.}

The type of this function is actually () -> Void, or you can call it “a function
with no parameters, and returns Void.”
Using Function Types

Function types are used just like most other types in Swift. For instance, you
can define your variable or constant to be a part of the function type and then
assign a suitable function to the variable;

1. var mathFunction: (Int, Int) -> Int = addTwolnts

You can read the above code as;

“Let a variable called mathFunction be defined with a type of ‘a function that
accepts two Int values, and returns an Int value.’ Set this new variable to refer
to the function called addTwolnts.”

This kind of assignment is allowed by the Swift’s type-checker since
the addTwolnts(_:_:) function actually has the same type as that of
the mathFunction variable.

The assigned function can now be called with the name mathFunction:
1. print("Result: \(mathFunction(2, 3))")
2. // Prints "Result: 5"
You can even assign a different function that has the same matching type to

the same variable, in the same way you do for nonfunction types.

1. mathFunction = multiplyTwolnts
2. print("Result: \(mathFunction(2, 3))")
3. // Prints "Result: 6"

As it is with many other types, you can let Swift infer the function type on its
own anytime you assign a function to a variable or constant;

1. let anotherMathFunction = addTwolnts
2. // anotherMathFunction is inferred to be of type (Int, Int) -> Int

Function Types as Parameter Types

Function type like (Int, Int) -> Int can be used as a parameter type for another
function. This allows you to enable the function’s caller to provide some
aspects of a function’s implementation when the function is called.

The below case is an example that prints the result of the math function
above;

func printMathResult(_ mathFunction: (Int, Int) -> Int, _ a: Int, _ b: Int) {

print{"Result: \(mathFunction{a, b))")

L a2 =

¥
printMathResult{addTwoInts, 3, 5)

=

J/ Prints "Result: 8"

%3]

The above case defines a function called printMathResult(_:_:_:), with
three parameters. The first parameter is named mathFunction, and has
type (Int, Int) -> Int. Any function of that type can be passed as an argument
for the first parameter. The 2nd and 3rd parameters are named a and b, and
both are of the Int type. These two parameters will be used as the two input
values for the math function.

The printMathResult(_:_:_:) will be passed the addTwolInts(_:_:) function
when it is called, followed by the integer values 3 and 5. The provided
function is called with the values 5 and 3 and 8 is printed as the result.

The function of printMathResult(_:_:_:) is to print a call’s result to a math
function of a suitable type. It doesn't even matter what that function’s
implementation is actually doing—what matters is that the function should be
of the right type. This lets printMathResult(_:_:_:) to hand off some of its
functionality to the function’s caller in a type-safe way.

Closures

Another useful feature of the Swift language is that of closures. A closure is a
small, anonymous piece of code that can be used like functions. Closures are
good for passing to other functions in order to tell them how they should
perform a particular task. To give you an overview of how closures work,
consider the built-in sort function. This function takes an array and a closure,
and deploys that closure to see how two individual elements of that array
should be ordered (i.e., which one should go first in the array):

var sortingInline = [2, 5, 98, 2, 13]
sortingInline.sort() // = [2, 2, 5, 13, 98]

If you want to sort an array so that small numbers will go before big
numbers, a closure can be provided detailing how that can be done like the
one below;

wvar numbers

= ’ 1 13]
{(‘_r;rr 'C'".--\-rf— [= r-rv'\--'--l-l |‘|11|_\ﬁi_£'|ﬂi—| T T e L] |‘|11|_\ﬁi_£'.lﬂi—|
st L o Liiad erdlled L F ddUNEA=T o5 gy ATl Lad e QWIS T

var numbersSorted = numbers.sort({
{nl: Int, n2: Int} -> Bool in returm n2 > nl

H) bR

AF= 1.2, 33, 33 56 150]

Closures have a special keyword, in. The in keyword enables Swift to know
where to break up the closure from its definition and its implementation. So
in the previous example, the definition was (n1: Int, n2: Int)->Bool, and the
implementation of that closure came after the in keyword: return n2 > n1.

A closure, just like a function, takes parameters. In the preceding example,
the closure clarifies the type and name of the parameters that it works with.
However, you don’t need to be quite so verbose—the compiler can infer the
type of the parameters for you, much like it can with variables. Notice how
types are obviously absent in the parameters for the following closure:

var numbersSortedReverse = numbers.sort({nl, n2 in return nl1 > n2})
Jf = [128, 55, 32, 13, 2, 1]

You can make it even terser, if you don’t really care what names the
parameters should have. If you omit the parameter names, you can just refer
to each parameter by number (the first parameter is called $0, the second is
called $1, etc.). Additionally, the return keyword can be omitted if your
closure only contains a single line of code:

var numbersSortedAgain = numbers.sort({
51 = 50
Y /=11, 2, 13, 32, 56, 128]

Lastly, if the last parameter in a function call is a closure, it can be placed just
outside the parentheses. However, this is just a way to improve code
readability and does not necessarily change how the closure works.

var numbersSortedReversedAgain = numbers.sort {
50 = 51
} // = [128, 56, 32, 13, 2, 1]

The defer Keyword

Sometimes, you may be planning to execute some codes but at a later time or
schedule. For instance, if you are writing code that opens a file and carries
out some changes, you will also need to make sure that the file is closed
when you are done. This is important, and it is easy to forget when you start
writing your method. The defer keyword allows you to write code that will
run at a later time. Specifically, code you put in a defer block will run when
the current flow of execution leaves the current scope—that is, the current
function, loop body, and so on:

func doSomeWork() {
print{"Getting started!")
defer {
print("All done!")
}

print("Getting to work!")

}

doSomekork()
/S Prints "Getting started!"”, "Getting to work!"”, and "All done!", in that order

CHAPTER FIVE

GETTING READY ON THE ROUTE
TO DEVELOPING 10S 14 BASED

APPS
The Apple Developer program

One of the first things you must understand on your way to learning the

essentials of iOS 14 based applications is deciding whether it becomes
essential for you to join the Apple Developer program. There are many
benefits you stand to get when you join the Apple Developer program as a
paid membership. There are two ways of enrolling in the Apple Developer
program; individual membership and the organizational or company
membership. The individual membership is when you paid the
membership to join the program by yourself while the organizational
membership is when your company has a paid membership already and you
are only expected to join through your company’s link. Today, membership
into the Developer program for Apple as an individual costs 99 USD per
year.

Prior to the on-boarding of the iOS 9 in 2015 and the Xcode 7, one of the key
benefits of the Apple Developer program was that you can test your iOS
based apps on physical iOS devices with the creation of provisioning profiles
and certificates once you joined the program. However, this seemed too
tedious and demanding at that time. Fortunately today, the only requirement
you need to have at your disposal if you plan to join the Apple Developer
program is your Apple ID.

Of course there are things you can actually get done on the platform without
paying the membership fee, but there exists some app development stuff that
you won’t be able to access without your paid membership. Features like the
Apple Pay, Game center, In-App purchasing and access to iCloud are only
possible with the paid membership. This is why it is advisable to endure and
pay the 99 USD membership fee to enjoy premium packages from the
Developer program.

The paid Apple Developer Program gives you, as an engineer, access to
some beta development tools, distribution ability through Apple’s App Stores
and beta operating system releases. It also lets you use some of the cloud-
dependent features of the developer platforms, such as iCloud, CloudKit,
Maps, In-App Purchase and App Groups. A lot of the cloud-dependent
features, like the iCloud will be used more often in this guide. You will not
be able to run these apps if you have not subscribed to the paid membership
yet.

The following are the benefits of a paid membership;

You will have unrestricted access to the Apple Developer Forums.
The Developer forum is often frequented by engineers from Apple
itself and you are allowed to ask any question bothering you. The
forum also has the presence of developers like you who are there to
learn, attempt to ask questions and rub minds together. Although, the
forum can still be accessed with your Apple ID.

You will also have unrestricted access to beta versions of any OS
before they are released into the market for public use. This way, you
can easily test your applications on the next iOS version, iPadOS, tvOS
and WatchOS so that you will be able to actually know if there is any
editing that you can do to your app to make the app compatible with
the latest OS. You will also have access to the beta versions of the
development tools.

You will not be able to submit or publish your apps to the App store
for sale without a paid Developer membership. What this means is that
membership will be needed at some point when you want to publish
your apps to the App store for download by users. Even you cannot
release your app for free on the App store without a paid membership.

That said, registering for the Developer Program is not necessary if you only
plan to view the documentation or you just want to download the current
version of the developer tools, so you can play around with writing apps
without opening your wallet to pay.

The next thing, then, is how to get registered on the Apple Developer
program.

Enrolling in the Apple Developer Program

To enroll in the Apple developer, you will need the following;

As an individual

o Apple ID with the two factor authentication enabled

o Basic information about you, including your address and
legal name.

o Your credit card details.

As an organization

o Apple ID with the two factor authentication enabled

o A D-U-N-S number. The D-U-N-S number is used by
Apple to confirm your company’s legal entity status and
identity. It is a unique 9 digits obtained from Dun &
Bradstreet used widely as a business identifier for
companies. If your company does not have a D-U-N-S
number, you can request one for your company. Visit
https://developer.apple.com/support/D-U-N-S/ for how to
check if your company already has a D-U-N-S number,
otherwise you can register by providing your details.

o Legal entity status. Apple will not accept a fictitious
business name. Your business must be registered as a legal
entity.

o Legal binding authority: The person registering for the
Apple Developer program on behalf of the company must
have legal authority to bind the company with Apple’s legal
agreements.

o Your organization must have a working website.

- Once all the requirements have been met, you can proceed by visiting
https://developer.apple.com/programs/enroll/, scroll down the page and
tap on “Start your enrolment.”

- You will be taken to a page where you are expected to input your
Apple ID. Enter your Apple ID and tap on the arrow to proceed.

https://developer.apple.com/support/D-U-N-S/
https://developer.apple.com/programs/enroll/

Sign in to Apple Developer
[Apple ID -r]

Remember me

Forgot Apple ID or password?

Don't have an Apple ID? Create yours now.

Follow all the instructions that will be prompted on the subsequent page to
register as an individual or to register for your organization.

Note: If your plan is to build iOS applications for your company, then you
need to check, first, whether your company already has a paid membership.
To do this, kindly confirm from your program admin and ask him/her to
invite you into the Developer program from the member center of the
Company’s Developer program. Once the admin has done this, an email will
be forwarded to you from Apple titled “You Have Been Invited to Join an
Apple Developer Program.” The email will contain the link you will follow
to activate your membership.

It won’t take up to 24 hours before you are finally accepted into the Apple
developer program as a solo member. You will receive the notification from
Apple in the form of an activation mail. If it is your company you are
enrolling for, acceptance can take weeks or months to be activated because of
the extra verification requirements involved.

While you are awaiting activation email from Apple, you can log into the
Member Center, albeit with a restricted access, using your Apple ID and
password at the URL below;

https://developer.apple.com/membercenter. Once you have logged in, tap on
the “your Account” tab located at the top part of the screen to see the active
status of your enrollment. Once you received the activation email, simply log
in to the member center and you will be able to see that you now have access

https://developer.apple.com/membercenter

to a wide range of resources.

CHAPTER SIX

THE Xcode 12 and the i10S 14 SDK
Installing Xcode 12 and the iOS 14 SDK

You cannot build an iOS app without an iOS SDK and Apple's Xcode
Development environment. You will be wondering, at this time, about what
Xcode is. Xcode is Apple's integrated Development environment where you
will have access to code, build, test and debug your iOS apps. The Swift
language is used to code iOS applications and the basics have been discussed
in the earlier chapters. The Xcode provides an IDE where you will get to use
the Swift language to compile and run codes for your iOS applications.
Xcode actually contains tools for developers to manage their whole
development workflows, till the point where they can submit such apps to the
App store.

This section will talk about how you can install the latest Xcode 12 and the
iOS 14 SDK, and also delve into their basic features.

You can download and install the Xcode 12 by following the steps below;

- Navigate to the Apple Developer page with the link
https://idmsa.apple.com/IDMSWebAuth/signin?
appldKey=891bd3417a7776362562d2197{89480a8547b108fd934911b«
and then sign in with your Apple ID and Password.

- Upon successful login, you will be taken to a page where you can
download the new Xcode 12. The Xcode file size is usually heavy, so
you must ensure that you have enough space on your Mac computer.

- Tap on the blue “Download” button.

- Upon successful download, double click on the file to start the “Un-
zipping” process.

- After unzipping, you can install the Xcode 12 on your MacOS by
dragging the file from the “downloads” folder and then inside
“Application” folder on your MacOS.

To open the app, scroll to the “Application” folder on your computer

https://idmsa.apple.com/IDMSWebAuth/signin?appIdKey=891bd3417a7776362562d2197f89480a8547b108fd934911bcbea0110d07f757&path=%2Fdownload%2F&rv=1

and tap twice on the app icon. You can even launch the app from your
Mac launch pad.
- Once you have successfully launched the app, you will be greeted with
the Xcode 12 welcome page.
Note: The iOS 14 SDK is downloaded from the Apple Developer page.

Creating a project with Xcode 12

Once you receive the Welcome page, simply tap on the “Create a new
Xcode project” to start creating a fresh Xcode project. A fresh Xcode project
will enable you to develop apps for iOS, watchOS, tvOS and iPadOS. When
you initiate a project, all the files and resources to be deployed to develop
your Apple apps will be organized and you can quickly and conveniently use
them wherever you want. There are available templates for each OS that you
want to develop, ranging from iOS, tvOS, iPadOS etc. If you wish to see the
interactive preview of what you are working on, select Swift as the
programming language and Swift Ul as the programming interface. Once a
project has been created, you will be able to access the main Xcode window.
It is from the window that you will be able to access, edit and manage all of
your projects.

Follow the steps to create;

1. Click twice on your Xcode icon to launch Xcode, and from the
“Welcome to Xcode” window, tap on the “Create a new Xcode
project.” Alternatively, select File, click on “New” and tap on
“Project.”

2. You will be prompted with a window where you can choose the
target operating system.

3. Choose a template under Application and click on Next.

For instance, if you plan to build an iOS app that has a single empty view,
choose Single View App. If you want to create macOS apps, choose App.
To create a watchOS app that can run without a companion iOS app,
choose Watch App.

4. Again, you will be prompted with another window where you are
expected to input some details in the text field and then configure

your project by choosing options from the pop-up menu.

You must input a name for your product (you can let the product name be
Hello Swift) and the organization identifier (a DNS string that can
identify your organization. In case your organization does not have,
simply use com.example and then follow this by your organization’s
name) and the name of the product you are building. You will also input
the name of your organization (fill this with your name in case you are not
working for an organization). You will see a bundle identifier (which is
obtained from your product’s name and your organization identifier) right
below the organization identifier box.

5. You will be prompted with a team pop-up menu where you are

expected to select your team.

You can add an account if the “Add account” button appears. This step
can be skipped since you can actually add a team to your project at a later
time.

6. Select your programming language from the language pop-up menu.
Here, you will select Swift as the programming language.

7. Choose an interface from the User Interface pop-up menu. You will
select Swift Ul here.

8. Tap on the “Include Unit Tests” and “Include UI Tests boxes” to add
a test target to your project.

9. Tap Next, and you will get a window asking you where you want to
save your work.

10. Choose a location for your project, optionally choose “Create
Git repository on my Mac” to deploy source control (recommended)
and then tap on “Create.”

The Xcode 12 Main Window (The Xcode 12
interface)

The Xcode 12 main window is actually an interface where you get to see, edit

and manage all of the essential parts of your project. As discussed, Xcode
displays your entire project in a single window, which is divided into a
number of sections. You can open and close each section at will, depending
on what you wish to see.

Let us take a look at each of these sections and examine what they do.

The editor

The Xcode editor is the place where you are going to spend a lot of time
since most of the coding is done there. The editor is where all source code
editing, project configuration and interface design are carried out. The editor
often changes depending on which file you are working on. If you are editing
your source code, the editor will be a text editor, with code completion,
syntax highlighting, and all the usual features that developers have come to
expect from an integrated development environment. If you are modifying a
user interface, your editor will be a visual editor, which will enable you to
drag around the major part of your interface. Each file you opened has their
special editor. When you initiate your first project, the editor will begin by
displaying the project settings. You can divide the editor into an assistant
editor and a main editor. The assistant editor displays files that are related to
the file you are working on in the main editor. It will continue to show files
that have a relationship to whatever is open, even if you open different files.
For instance, if you open an interface file and then open the assistant, the
assistant will, by default, show related code for the interface you are editing.
If you launch another interface file, the assistant will display the code for the
newly opened files.

At the top of your editor, you will see the jump bar. The jump bar allows you
to quickly jump from the content that you are editing to another piece of
related content, such as a file in the same folder. The jump bar is a fast way to
navigate your project.

The toolbar

The Xcode toolbar serves as mission control for your entire interface. The
Xcode is the only part of your Xcode that will not change significantly as you
develop your applications, and it also functions as the place where you will
get to control what your code is actually doing.

The Xcode Toolbar contains the following items;

Run button

When you tap on the run button, the Xcode will be instructed to compile and
start your application. Depending on which application you are running and
the settings you selected, the run button will have different actions;

- If you are building a Mac application, the new app will show in the
Dock and will run on your machine.

- If you are building an iOS application, the new app will open either on
a connected device (like iPhone or iPad) or on the iOS simulator.

Additionally, if you tap and then hold on the run button, you can change it
from run to some other actions like Test, Analyze or profile. The Test action
will run any unit tests that you have initiated; the Profile action will run the
application Instruments, while the Analyze action will examine your code
and help you figure out potential problems and bugs.

Stop button

Simply tap on the Stop button if you plan to terminate any task that is
currently being run by the Xcode - if it is creating your application, it
terminates; and if your application is running in the debugger, it stops it.

Scheme selector

In Xcode, Schemes are called build configurations—that is, what you want to
build, how the product will be run on a device, and where it will run (will it
be run on your computer or on a connected device).

ece » 7/ HelloSwift) @ iPhone 6s Plus
|i< > B
#: HelloSwift D |

¥ HelloSwift
._“ PROJECT
\;’1 AppDelegate.swift)

= 2 HelloSwift

3| ViewController.swift elloSw

Your projects can feature multiple apps inside them. Using the Scheme
selector, you can choose which target or app that you plan to create. To select
a target, tap on the left hand side of the scheme selector. You can equally
choose where your application will run. If you are creating a Mac application,
you might likely be planning to run the application on your Mac. If you are
creating an iOS application, you, however, have the option of running the
application on an iPad simulator or an iPhone simulator. (These are actually
the same application; it simply changes shape depending on the selected
scheme.) You can also decide to run the application on a connected iOS
device if the device has been set up for development.

Status display

The status display displays what the Xcode is doing—creating your
application, installing an application on an iOS device etc.

If you have more than one task in progress, you will see a small button on the
left side which cycles through your active task when you tap it.

Editor selector

The editor selector is the one that will determine how the editor will be laid
out. You can choose to show either a single editor, the version editor or the
editor with the assistant, so that you can always compare different files’
versions if you are deploying a revision control system such as Subversion or
Git.

The navigator

The lefthand area of your Xcode window is the navigator, which presents
information

about your project. Tapping on a specific button in the navigation bar will
prompt different parts of the project inside the content area.
N EH 2 O 5 =

v HelloWarld
3 AppDelegate,swill
4 VigwContralker swil
Main, storyboand
Assels Xoassels
LapnchSereen. storybaard
rfa, plist -
L HelloWaorld Tesis
a HelloWaorldTests. swill
mfo.plist
L HalloWarld Imests
4 HelloWaorldUITests, swil
mfo, plist

& o Products

From left to right, the navigation section has nine (9) tabs which include;
Project navigator

The project navigator will list various files in your project. This navigator is
actually the most common as it actually determines what will be displayed
inside the editor. Whatever you choose in your project navigator will be what
you will see in the editor area.

Source control navigator

The source control navigator helps to access your source control working
copies, commits, branches, tags and remote repositories.

Symbol navigator

All of the symbols in your project can be accessed with the symbol navigator.
It helps list all the functions and classes existing in your project. If you want
the quick summary of a class or you just want to jump directly to a method in
that class, you will find the symbol navigator handy.

Search navigator

With the Search navigator, you can always search across your project while
looking for specific texts. (Simply use the &8 -Shift-F shortcut. Press 3£ -F
if you plan to search the current open document.)

Issue navigator

The issue navigator lists all the problems encountered by Xcode in your code.
This can include compilation error, warnings, and issues spotted by the built-

in code analyzer.

Test navigator

The test navigator displays all the unit tests that are associated with a project.
Unit tests used to be an optional component of Xcode but are now built into
Xcode directly.

Debug navigator

The Debug navigator will become active during program debugging. You
will be able to check the active state of the threads that constitute your
program.

Breakpoint navigator

With this navigator, adding, editing and deleting breakpoints that you set
while debugging your program becomes easier.

Report navigator

The Report navigator lists all the activity that Xcode has carried out with a
project (like building, analyzing and debugging). It is even easier to navigate
back and check previous build reports in your Xcode session.

The Debug area

About the debug area

You can inspect your code while running your application by using the
Xcode debugger. Automatically, you will see the debug area and the Debug
navigator when you create and start your application. If necessary, you can

display the navigator area by tapping on the left button (IEI) and display the
debug area by tapping on the middle button (I;|) on the right of your toolbar.

Run your app.
Set a breakpoint.

Disable a breakpoint.

[] ® » | | A) 58 | Running HelloWorld on iPhone 11 Pro Max -+ & | O e
BEERTAMNSED S| I < & HelloWorld) [HelloWorld) 4 ViewController.swift) [[) sayHello(_:) =0 M
¥ Helloworld PID 2775 (@ [/"

§ cpu % import UIKit -

M 10.1 [4B -

..]muﬁ::.‘.my z class ViewController: UIViewController {

2] pisk Zero Kli/s I ® @IBOutlet weak var label: UILabel!

@ Network Zero K|ifs override func viewDidLoad() {

¥ () Thread 1 Queue: c...d (selfal)

super.viewDidlLoad()
// Do any additional setup after loading the view.

) 1 0 ViewController.sayHell... }
17 UlApplicationMain
Y 18 main //Action method for the button
NS start ® @IBAction func sayHello(_ sender: Any) {
label.text = "Hello There" = Thread 1: breakpoint 1.1
20 start }
» () Thread 2 Queue:...or (serial) }

» () com.apple.uikit.eventfetch...

FE = > & L 2|0 5o <7 Helloworld) () Thread 1) [0 ViewController.sayHello(_:)

» [sender = (UiButton) 0x00007f9b70d079e0 (11db) po label

v [self = (Helloworld ViewController) 0x00007f9b70f07e00 v Optional<UILabel>
P UIKit.UlViewController (UlviewController) - some : <UILabel: @x7f9b736849fe; frame = (160

424; 94 4B); text = 'Label'; opaque = NO;

P label = (UiLabal?) 0x0000749073604810 autoresize = RM+BM; userInteractionEnabled
= NO; layer = <_UILabellayer:
0x600000ad3250>>
(11db)
e T EE | s ¢ ® | Al Qutput & ® i | D0,
lNa\ri(_;ate the stack. View variables in the current scope. View output and enter commands.

The following are the three main parts of the debug area:

The debug bar has buttons that you can use to enable or disable all
breakpoints, enable graphical debugging of memory state and view,
control the execution of your app, simulate location, jump to stack frames
and override environment settings.

The variables view brings the list of variables that are available to inspect
within the scope of your present location in the code. This list is actually a
disclosable hierarchy, showing the values of all parts of the structure of a
variable as you continually tap the disclosure triangles.

The console contains a text area like an interactive Terminal. The console
can be used to interact directly with the LLDB (The LLDB command-line
debugger gives underlying debugging services for app development on all
of Apple platforms. You can prompt LLDB debugging commands from
your Xcode debugging console while debugging an app or from the
Terminal window.), view result from use of Print Description, and also
work with standard input and output from your app. For instance, enter po
[expression] and the debugger will execute the expression. As you are

typing your expression, the debugger will continually offer you useful
suggestions for completing what you are typing.

IDebug bar

|
E » > & L 2|0 % MyUIKitApp) () Thread 1) Y 0 ViewController.viewDidLoad()

| v [self = (MyUIKitApp.ViewController) 0x000078de0d04d00 | (11db) p accessibilityFrame

¥ UIKit.UIViewController (UlViewController) (CGRect) $R@ = (origin = (x = @, y = @), size
= (width = @, height = @))

» baseUIResponder@0 (UIResponder) (11db) |

» _overrideTransitioningDelegate = (id) Ox0

P _view = (UIView *) 0x7f8de0d0cc00

» _tabBarltem = (id) 0x0

» _navigationltem = (id) Ox0

» _toolbarltems = (id) Ox0

> _title = (id) 0x0

» _nibName = (__NSCFString *) "BYZ-38-t0r-view-8bC-Xf-...

Auto & (5] All Output ¢ S) [| |

Variables view Console

Multiple applications and processes can be debugged at the same time. You
will need to create a separate project window for each session.

View threads in the debug area

You can leverage the debug area to examine the stacks and threads of your
running app. When you choose a thread, or a stack within a thread, in the
debug bar, the Xcode will show you the corresponding assembly code or
source file in the source editor. The debug area opens automatically when
you create and run your app.

View source or assembly code.

@ @ & O

89 < > [B HelloWorld) || HelloWorld) = ViewController.swift) No Selection <>

) ® | 2 53] v H..d) @ iPhone 6s Running HelloWorld on iPhone s 1

[import UIKit 1

class ViewController: UIViewController {
@IBOutlet weak var label: UILabell

override func viewDidLoad() {
[super.viewDidLoad() Thread 1: breakpoint 21 __|
/f Do any additional setup after loading the view, typically from a nib.

override func didReceiveMemoryWarning() { =
super.didReceiveMemoryWarning()

/f Dispose of any resources that can be recreated.
1

E » > & L 2 0 S « Hellowor ([) Thread 1 > 10
¥ [self = [HelloWorld ViewController) 0x00007f932¢09cc0 | @ Thread 2 L
» UIKit.U[ViewController (UiViewController) @ Thread 3 >
¥ label = |UlLabel!) 0x000071f932d08f10 Il Thread 4 » =] 0 kevent_qos
P baselIView@0 (UIView) m Thread 5 » . 1 _dispatch_mgr_wait_for_event
¥ _highlightedColor = (id) 0x0 @ com.apple.uikit.eventfetch-thread (6) [[l 2 _dispatch_mgr_invoke
-nuntber0fLines = (long long) 1 (D Thread 8 > =] 3 _dispatch_mar_thread
_megsuredNumberOfLines = (long long) -1 A
_last|ineBaseline = (doublc) 0 L I
_preyi i FromBottom = (double) 0
_firsiLineBaseline = (double) 0
_preyiousFirstLineBaseline = (double) 0
_min|mumsScaleFactor = (double) 0
P _content = (NSTaggedPointerString *) 0xa00006c6562614cS
Auto & @ Filte a0
Pause or play execution. Choose a thread.

1. In the debug area, tap on the Pause button or exercise a little patience
for the application to terminate at a breakpoint.

2. In the debug bar, select a thread from the displayed pop-up menu.

3. In the source editor, check the corresponding assembly code or
source code.

View variables in the debug area

In the debug area, you can uncover a problem in your source code by
inspecting the value of a variable. The debug area opens automatically when
you create and run your app.

Set a breakpoint.

Run the app.
L] ®) i} /\ H..d) @@ iPhone s Running HelloWorld on iPhone 6s 1 = @ @ O3 O
18 < & Helloworld) | | Helloworld) » ViewController.swift No Selection £ >
import UIKit
class ViewController: UIViewController {
@IBOutlet weak var label: UILabel!
override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
}
override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated. 1 |
}
@IBAction func sayHello(_ sender: AnyObject) {
label.text = "Hello, do you like my hat?" Thread 1: breakpoint 1.1
H
}
E = > & & 2|0 3 Helloworld) () Thread 1) [0 ViewController.sayHello(AnyObject) -> ()

> @ sender = (UIButton *) 0x00007ff5d725608
» UlKit.UIViewController (UIViewController)
¥ label = (UlLabel!) 0x00007fec1340c430

¥ baseUIView@0 (UIView)

» _highlightedColor = (id) 0x0
_numberOfLines = (long long) 1
_measuredNumberOfLines = (long long) 0
_lastLineBaseline = (double) 16
_previousBaselineOffsetFromBottom = (double) §
_firstLineBaseline = (double) 16
_previousFirstLineBaseline = (double) 16
_minimumScaleFactor = (double) O

. uto & | @ O @ Filter Dlj‘
| Print Description. Filter the results.
Open Quick Look. Open the variables view.

Choose a scope option.

Open the variable structure.

Each item inside the variables view list displays; the name of the variable as
it appears in the code, the current value of the variable, the runtime type of
the variable, and a summary for the variable, if available. The icon in the
name of the variable indicates the kind of the variable.

View variable

1. In the debug area, tap on the Pause button or wait for your app to
terminate at a breakpoint you had set previously.

The variables that are in scope will be shown in the variables view of the
debug area. The variables that have been deallocated appear dimmed and
cannot be inspected.

2. Select a scope option from the pop-up menu at the lower-left corner
of the variable view.

Display recently accessed variables: Select Auto.
Display only local variables: Select Local.
Display all variables, registers, globals, and statics: Select All.

3. You can filter your results by entering texts inside the search field
located at the bottom-right corner.

4. Tap the disclosure triangle located to the left side of the variable to
access the structure of a variable.

5. You can edit the summary format of a variable by Control-click on
the variable and then select Edit Summary Format... from the
shortcut menu.

Set Summary Format for type | NSString *

@ Summary format is valid
Done

In the popover, input a valid expression and tap “Done.” The default
formatter will be overridden by this expression and is used to create a
summary for all variables of this type.

6. The value of a variable can be edited by Control-click the variable,
select Edit Value... from the shortcut menu, and input a new value.

View memory for a running app

1. In the debug area, tap on the Pause button or exercise a little patience
for the application to terminate at a breakpoint you had set
previously.

2. Command-click on a wvariable and select View memory of
“variableName” or choose the Debug > Debug Workflow > View
Memory (Shift- 3§ -M) menu item to launch the memory console.

4294986704 KlZ] 0:8016024032.v4000

4294986722 :8@"NSApplication”
4294986740 KX 16@"NSString"24@"N
4294986758 EE SError"32.v3200:8@
4294986776 p¥ "NSApplication"16@
4294986794 ¥l "NSUserActivity"24
4294986812 [=7] .v3200:8@"NSApplic

4294986830 Xl ation"16@"CKShareM
4294986848 33 etadata"24.v240@0:8
4294986866] 016.v2400:8QR"NSNot

4294986884 G ification"16.#16@0
4294986902 :8.016(00:8.02400:8
4294986920 KL :16.03200:8:16024.
4294986938 A7) P4000:8:16024@32.c
4294986956 [kl 1600:8.c2400:8#16.
4294986974 [l c2400:8R"Protocol"
4294986992 kil 16.c2400:8:16.Vv1é
4294987010] 0@:8.Q16008:8."{_NS

4294987028 1 Zone=}16@0:8.R"NSS

4294987046 [tring"16008:8.v1608
4294987064 KLY :8.0@"NSWindow".@"S
4294987082 %] CNNode".c.@"SCNVie
4294987100 w".hash.TQ,R.super
4294987118 K] class.T#,R.descrip
4294987136 tion.TE"NSString”,

4294987154 ¥l R,C.debugDescripti
4294987172 48 on.window.TR"NSWin
4294987190 18 dow",W,V_window.He
4294987208 [1lo!.cha

Address 0x100004bd0 Page ¢ > Lock @ ..mberof Bytes 512 O
Memory addresses Go to address Lock view Number of bytes
or variable

Previous / next page of memory

The memory console displays the ASCII contents and hexadecimal of
particular memory address ranges.

3. Tap on the memory addresses column to pick between hexadecimal
and decimal representations.

4. Input a memory address or the variable’s name in scope to navigate
to that region of memory.

5. Click the previous and next page controls to navigate between pages
of memory.

6. Click the lock view button to prevent updates to the contents of
memory in the current view.

7. Choose a different number of bytes to show on a single page.

Managing project file
About the Project navigator

The project navigator, like it has been said before, can be used to launch, add,
delete, and organize files in a project. Tap on the Project navigator button (=)
located at the top section of the navigator area and your project files will be

shown in the content area below.
|Open the project navigator.
B &2 Q A © E o B

v Q{ HelloWorld Select a file to show it in the editor area.
v HelloWorld

2| AppDelegate.swift
2| ViewController.swift
Main.storyboard

| Assets.xcassets

[d

LaunchScreen.storyboard
| Info.plist
v HelloWorldTests
3| HelloWorldTests.swift
I Info.plist
v HelloWorldUITests
3 HelloWorldUITests.swift
| Info.plist
> Products

+[® OH)

|Search for a file. Show recently modified files.
Open a file: Tap the file to quickly open the file in the editor area.
View properties of a file: Select the file by clicking on the file, then tap

View > Inspectors > Show File Inspector. The properties of the file will be
displayed in the File inspector.

Search for a file: Write anything you want to search inside the filter field
below the content area.

Show recently modified files: Tap on the Recent Files icon (o) inside the
filter field.

Show files with source control status: Click on the Source Control icon (=
) inside the filter field.

Unlock a file: Choose the file, then select File > Unlock. (If the file is
already unlocked or you don’t have permissions to unlock the file, the menu
item is disabled.)

Choose a relative or absolute location: In the File Inspector, choose a

location from the Location pop-up menu. For example, choose Relative to

Group (recommended) to preserve references when you move your project
folder.

Modify the default move and copy behavior: To force a move operation,
press and hold Command (d£) while dragging files. To force a copy
operation, press and hold Option (-). To force a reference operation, press
and hold Command-Option (4 -).

Add files and folders to a project

Xcode has templates for the common kind of files you may wish to add to
your project, such as Swift files or Playgrounds. You can as well add copies
of, or references to, existing files and folders on your computer.

Select a platform. Search for a template.

Choose a templatle for your new file:

Im watchOS tvOS macOS | ®
Source
@ 3 m
Cocoa Touch Ul Test Case Unit Test Case Swift File Objective-C File
Class Class Class
h "g W Cr N
Header File 1IG File C File C++ File Metal File
User Interface
. |
Storyboard SwiftUl View View Empty Launch Screen
Cance
Select a template. Add the selected template to your project.

Adding existing files and folders

1. In the Project navigator (=), choose the precise location where you

want the file to be added.

2. Tap on the Add button (+) in the filter bar and select File from the
pop-up menu (or choose File > New > File).

3. Tap iOS, tvOS, watchOS or macOS located at the top of the page to
bring the templates for that platform. The templates are often
organized into groups like Source, Resources and User Interface.

4. Choose a template for the file type, and tap “Next.”

5. In the following window, input the required information and tap
“Next.” For instance, fill in a class name for a class implementation
file.

6. In the last page that will be prompted, select a location and input a
filename (if applicable).

7. From the Group pop-up menu, select a group. If the group is
associated with a folder (the default when you create a group), the
project structure is the same as the file system structure.

8. Choose the targets that you plan to add the file to.

9. Tap on “Create.” The new file is selected in the Project navigator and
opens in the appropriate editor.

Adding existing files and folders

1. In the Project navigator (=), choose the destination group or project
for the item you want to add.

2. Tap on the Add button (+) inside the filter bar, select Add Files to
“[Project Name]” from the pop-up menu (or choose File > Add Files
to “[Project Name]”), and choose the files or folders.

3. Tap on options at the bottom of the page.

The listed are the options for how your folders and files can be added;
Choose

e Copy items if needed: Copies the files and folders to the project folder.

e Create groups: Keeps the group structure the same as the file structure.

e Create folder references: Shows the folders in the Project navigator but
doesn’t copy them to the project. A folder reference is a reference in
the Project navigator to a folder in the file system.

Destination: Copy items if needed

Added folders: Create groups
© Create folder references

Add to targets: # Helloworld
HelloWorldTests
HelloWorldUITests

New Folder Options Cancel mﬁ-

In Add to targets, select the targets (target is the product that you
want to build) that you wish to add the file to.
Optionally, tap on New Folder if you want to add a folder for
your files.
Click Add.
Note: You can also drag the files from the Finder to a location in the Project
navigator to add them.

Deleting files and folders
1. In the Project navigator (=), choose the files and folders.
2. Choose “Edit” and then tap “Delete.”
3. Choose a delete option from the displayed dialog.

Remove the files and folders from the project and the file system:
Click Move to Trash.

Remove the files and folder references from the project only: Click
Remove References.

Do you want to move “CustomView.storyboard” to the Trash, or
\ ix only remove the reference to it?

Cancel " Remove Reference | Move to Trash

Organize files in groups

Organize the files that you have added to your project with Groups. For
instance, the project you created from a template will contain a group
containing the files for each target. A group is associated with an underlying
folder that has the same name by default.

Add a new group: In the Project navigator, tap where you plan to add the
group, then select File > New > Group. To create a group without an
associated folder, click File, select New and choose “Group without Folder.”

Add files to a new group: Choose the files, then tap File > New > “Group
from Selection”. The files will be transferred to the associated folder in the
file system.

Add files to an existing group: Choose the files and then drag the files to the
group. If the group is associated with a folder, the files will be moved to the
associated folder.

Rename a file or group: Click twice on the group or file and then input
the new name for the group or file.

Change a group’s associated folder: Tap on the group, then select View >
Inspectors > Show File Inspector.

CHAPTER SEVEN

AN INTRODUCTION TO Xcode 12
PLAYGROUND

With the Playground feature in the Xcode 12, learning and programming with

Swift has never been that easier. Playground offers an interactive
environment where users (developers) can enter executable Swift codes with
the result showing in real time.

Create, edit, and execute playgrounds

You can use the playgrounds feature in Swift to learn and navigate the world
of Swift, prototype parts of your app, and also create learning environments
for others. The interactive Swift environment allows users to experiment with
code, create custom views and even explore system APIs. Notes and guides
can be added in your codes for other users by using the rich comments. Also,
you can add navigation and assemble concepts that are similar into pages. In
playgrounds, you can run code from the insertion point supporting an
incremental development style. When every part of your codes has been
perfected in the playgrounds, you can then transfer your codes successfully
into your project.

View results.
Edit playground code. Progress indicator Open the live view.
CK Ready | Today at 1:52 PM {1 E Rss Teii=RNa]

I 83 3| MyPlayground 1 |

1 |import UIKit

Z
— (») var str = "Hello, playground" Hello, playground O]

=

Run the entire code listing.

Run code from this point.

How to create a playground

1. Tap “File,” select “New” and then choose “Playground.”

2. From the prompted page, choose the platform you want your
playground to run on.

Select a template.

Select a platform.

P Ready | Today at 1:13 PM E

88 < NpSele choose a template for your new playground:

tvOS macOS ()
Playground

N} N 3 N}
| [Biank | Game Map single View

Cancel Next

3. Under Playground, choose a template out of the available templates,
then tap Next.
The available templates are:
e Blank: A generic playground.
e Game: A playground developed based on SpriteKit.
e Map: A playground that deploys MapKit.
e Single View: A playground with a single view.

Tap on the “Next” button at the bottom and you will be
directed to a page where you can enter the file’s name and choose a location.
Once you have done these, tap on “Create.”

Edit a playground

It is worth telling that the source editor in a playground has the exact features
as the source editor inside the project editor.

e Input Swift code into the playground source editor: Xcode parses your
codes as you enter them in the source editor. If there exists a syntax error

in your code, you will receive a prompt (message) beside the line of code
that contains the syntax error. To see the full message that talks about the
issue and suggests fixes, tap the error or warning icon. Then tap on the Fix
button next to a suggestion to update your code.

e Deploy the code completion if you want to avoid syntax error henceforth.

Xcode gives you inline suggestions for completing the name of a symbol.
Tap on an item in the suggestion list or deploy the Up Arrow or Down Arrow
keys to choose it. Then hit Return to accept the suggestion.

For a method or function containing parameters, code completion places a
placeholder for each parameter. To scroll to the next placeholder, press Tab;
to move to the previous placeholder, press Shift-Tab.

e To replace texts or find specific texts, select Find followed by an option.

For example, click Find > Find and Replace, then enter text in the Replace
and with fields and press Return.

Run a playground

You can run your code automatically by stopping entering code or rather
manually when you are ready. While your code executes, you will see a
progress indicator in the toolbar showing on the right, and when the code
ends, you will obtain the results in the same location.

e To have a view of the playground live view while you are still running the
code, launch the assistant editor.

e To switch between run modes, tap and hold the Run button, then select:

e Automatically Run: Choosing this, you will be able to run your code each
time you enter a statement or pause typing.

e Manually Run: Choosing this, you will be able to run the code only when
you click a Run button.

Note: In most of the available templates, the manual mode is the default
mode.

To run code from the insertion point in manual mode, hover the pointer over
the line number in the gutter, then click the Run button that appears.

To run the entire code listing in manual mode, click the Run button at the
bottom of the window.

Add, edit, and view rich comments

You can add formatted text to your playground by using the playground
markup format. The markup format supports rulers, headings, lists, emphasis,
code voice, bold, assets, links, and more. The rendered text can be accessed
by switching to rendered markup mode, and you can switch to raw text mode
by editing the markup.

The below markup renders as a title followed by a bulleted list.

/*:### Some Animals* Cat* Dog* Llama*/

Rendered markup

[XN Ready | Today at 1:54 PM {1 E @ | < OB | O
R CEN A ==] g8 < s MyPlayground) s Lesson 1
v MyPlayground]
- Bl Some Animals
» [Sources
¥ [Resources * Cat
* Dog
* Llama
7
8 import UIKit
9
@ var str = "Hello, playground"
+ @ O = P

View the rendered markup: To view the rendered markup, select “Editor”
and click on “Show Rendered Markup.”

Edit the raw text: To edit the raw text, select “Editor” and click on “Show
Raw Markup.”

Add auxiliary code to a playground

If you plan to add code that you don’t want to recompile each time you run
the playground or you don’t want the user to see the codes in the playground,
simply add the source files to the playground or a page Sources folder. Xcode
will compile files in Sources folders only when you add the files or save edits
to the files.

The public symbols in files you added to the playground Sources folder will

be made available to all pages in the playground. On the contrary, the public
symbols in files you added to the page Sources folder will only be made
available to the page containing the Sources folder.

Important: The compiled code imports into a playground as a module. To
view a symbol (class, method, function, variable, or protocol) in the
playground, the auxiliary Swift source file must use the public keyword to
export the symbol.

Add a new source file

1. Launch the Project navigator (click on View, select “Navigators” and
then click on “Show Project Navigator™).

2. In your Project navigator, choose the Sources folder for the page or
playground, tap on the Add button (+) located in the filter bar, then
select Add Files to "Sources" from the pop-up menu (or tap on File,
select “New” and click on “Add Files to "Sources"”).

A new Swift file will appear in the Sources folder and will be opened in the
source editor.

A page's source files

The playground's source files
[ON | Rlrady(] Today at 3:31 PM {3 E @ & O = O
B BQAPRPEDB BB < 3| MyPlayground) [Sour:es} = New Fi\e.swi!t>No Selection
¥ |3 MyPlayground 1 import Foundation
¥ s Get Started Page
> Sources ——
> Resources
P> 3 Lesson 1
¥ [Sources
New File.swift
> Resources
+ |® OH| =

3. Edit your code in the file, then select File > Save (Command-S) to
compile the code.

Add an existing source file

1. In your Project navigator, choose the Sources folder for the page or
playground, tap on the Add button (+) located in the filter bar, then
select Add Files to "Sources" from the pop-up menu (or tap on File,

select “New” and click on “Add Files to "Sources"”).

2. In the dialog that is displayed, choose the source file and then click
Add.

The file appears in the Sources folder.

View results of an executed statement

See the detailed result of an executed statement in a Quick Look preview or
simply by adding a results view to your playground. Some results can be
viewed in different ways. For instance, the set of results for a number
variable in a loop can be viewed as a set of values for each iteration, a graph
of the values for each iteration of the loop or the value of the last iteration.

View a Quick Look preview of the results

e In the sidebar, hover the pointer adjacent to the Show Result button for
the line of code, then tap on the Quick Look button that appears.

The results view appears in a popover.
Show the Quick Look results

[] @ Ready to continue BlankPlayground {} E @ & I e [

B8 3| BlankPlayground

import UIKit

3 wvar j = 2 - O]

5 for i in @ ..< 5 {
6 j=q+ (3 %) 7 e
1 B i

@ . -~—

= 0
Add a results view to the playground

1. In the sidebar, tap on the Show Results button for the line of code (or
position the insertion point in the line of code, then select Editor and
tap on “Show Result for Current Line).

A results view will show in the editor below the line of code.

@® @& Ready to continue BlankPlayground {] E @ &7 D Q IE

BH 2| BlankPlayground

import UIKit
] wvar j = 2 2 -

5 foriine ..<p {
j=3+ (j i) (5 times) =

»

/

- -

®

Add a results view to the playground.

Hide a results view in the playground

e In the sidebar, tap on the Show Results button for the line of code (or
position the insertion point in the line of code, then select Editor and tap
on “Hide Result for Current Line”).

Resize a results view
1. Hover the pointer over the corner or edge of the results view.

The pointer will change to a double-headed arrow.

2. Resize the edge of the result view by dragging the edge.

Change the display of a results view

You can access some results in different ways. For instance, you can view the
value of a number in a loop as a graph, as the last value or as a series of
values.

e Control-click the results view in either the Quick Loop popover or the
source editor and then select an option from the popup menu:

Latest value: Shows the current value.
Value history: Shows all the values.
Graph: Shows the values as a graph.

You can alternatively select the results view in the source editor, then click
on “Editor > Result Display Mode” and any of the above options.

Add a color, file, or image literal to a playground

You can create literals in your playground code when the value of a color,
file, or image does not need to change. The same literal can be used in many
places in your playground. The types of literals are: Color, Files and images.

Adding a color literal

1. Position the insertion point inside the code where you plan to add the
color literal.

2. Choose “Editor” and select “Insert Color Literal.”

Color literal
T @ Ready | Today at[2:45 PM : (} E L2 I O =t I I |

f Current Color I
BE < > [s MyPlayground) u Untitled I I

1 //: [Previous](@previoufs)

2

s import Ukt [NN

: EEEEEN

5 var str = "Hello, playgjroy

6 var imageView = UIImagel/ie

7

8 imageView.tintColor = D

9

® 1+ thext(enext) HEENT N

= > Other...

3. Tap twice on the color wheel that shows and then select a color from
the color picker.

Add a file literal
- Position the insertion point inside the code where you plan to
add the file literal.
- Choose “Editor” and select “Insert File Literal.”
- In the page that shows, choose a file, then click Open.
Adding a file literal to a playground page will automatically add it to the

page’s Resources folder; otherwise, it will be added to the playground
Resources folder.

Add an image literal

- Position the insertion point inside the code where you plan to
add the file literal.

- Choose “Editor” and select “Insert File Literal.”

- Inthe page that shows, choose a file, then click Open.

Adding a file literal to a playground page will automatically add it to the
page’s Resources folder; otherwise, it will be added to the playground
Resources folder.

Alternatively, you can drag an image file to the source editor.

Copying and moving literals

e Use the Edit menu to cut, copy, and paste literals.

Add, move, and rename playground pages

Add pages to your playground to create separate lessons. Then you can
rename the playground pages and change the order.
Add a new page
1. Launch the Project navigator (select View, tap on Navigators and
choose “Show Project Navigator™).

2. Choose File, select New and choose Playground Page.
Two new pages will show in the playground group the very first time you

add a page to your playground. One will contain the current content of the
playground editor and the other will be the new page.

| NN Ready | Today at 8:20 |
B 2 QAN =D &
¥ |3 MyPlayground
mUntitled Page 2 l

v Sources

> Resources
P 3 Untitled Page
v Sources

> Resources

+ @ Filter O

Rename a page

1. In the Project navigator, choose the page and tap Return. The page’s
name will become editable.

2. Input the new name of the playground page inside the text field and
click on Return.

Change the order of pages

e Change the order of pages by dragging a page to another location in the
list of pages.

Copy a page from one playground to another

1. Launch the Project navigator (choose View > Navigators > Show
Project Navigator) in each playground.

2. Drag that page from the source playground to the destination
playground.
The page and any associated resources and sources will be copied to the
destination playground.

Add an interactive live view

The live views can be deployed to make your playground to be interactive as
much as possible, create your own custom elements and experiment with
various user interface elements. Add an interactive live view to your
playground by importing PlaygroundSupport and setting the live view of the
current page to your custom view or view controller.

Note: If you choose the Single View template when you create a playground,
your code already sets the live view. Simply launch the assistant editor and
run the code.

Add a live view
1. In your code, import PlaygroundSupport.
Add this code snippet;
import PlaygroundSupport

2. Set the page’s live to an instance of your view or view controller.

For instance, the Single View template will set your page’s live view to an
instance of MyViewController:

PlaygroundPage.current.liveView = MyViewController()

3. Open the assistant editor in the playground (select View, tap
Assistant Editor and click on Show Assistant Editor), then run the
code.

The live view will render inside the assistant editor and will not stop running
until you stop it or an error occurs.

CHAPTER EIGHT
USING Xcode in SwiftUI Mode

CREATING A SWIFT UI INTERFACE

Show a preview of your user interface

You can display an interactive preview of the SwiftUI code that you edit in
the source editor.

As you make edits in your code, Xcode builds and runs the code, and
displays the results in the canvas. The codes you enter in the source editor
and the user interface layout in the canvas are kept in sync by the Xcode. If a
user interface element is added to the canvas from the library, Xcode will add
the corresponding code to the source file. If you choose an element on the

canvas, the corresponding code is selected in the source file. For every
element’s properties you change in the inspector, Xcode will add code to the
source file.

To get started using SwiftUI, either choose SwiftUI as the user interface
when you create an Xcode project, or add a file that uses SwiftUI to an
existing project.

Add a file that uses SwiftUI
1. Select “File,” tap on “New” and click on “File.”

2. You will be taken to another page, choose the platform, choose
SwiftUI View under User Interface and then tap “Next.”

3. Another page will be prompted where you will input the name of the
structure. Once you are done, tap on “Create.”

Optionally, select a group from the pop-up menu and choose an alternate
target.

The canvas will appear automatically to the right of the source editor.

Show a preview

1. In the Project navigator, choose a file that uses SwiftUI, then select
“Editor” and tap on “Canvas.”

Alternatively, you can select Canvas from the Editor Options pop-up menu
located on the right of the jump bar.

2. Tap on the Resume button located in the upper-right corner of the
canvas to start the preview.

Run the app on a simulated device with or without a debug session

You can switch from the preview to a live preview where the app is run on a
simulated device directly in the canvas, or switch to a debug preview that has
a debug session. For macOS apps, the app will run on the desktop, not in the
canvas. First display a preview, then deploy the controls in the lower-right
corner of the canvas to switch between modes.

e Tap on the live preview button inside the canvas to start running the app.

iOS,watchOS and tvOS apps will run on a simulated device in the canvas.

macOS apps run on the desktop. Click the Bring Forward button in the
canvas if the window is not showing.

e If you plan to run the app with a debug session, simply Control-click the
Live Preview button in the canvas, then select Debug Preview from the
pop-up menu.

When the app opens, you will see a debug session in the debug area.

e To terminate the debug preview or the live preview, click on the Live
Preview button in the canvas. Xcode will go back to the preview mode.

Run on a connected device

For i0S, tvOS, or watchOS apps, your app can be opened on a device from
the preview but the app must be code-sighted before launching.

Before you start, you will need to add your Apple ID account and also assign
the target to a team, then show the preview.

1. Connect the device to your Mac.
For watchOS apps that depend on an iOS app, connect an iPhone that has
been paired with an Apple Watch.
2. Select the Preview on Device button (located below the Live Preview
button) in the canvas.
If your app refuses to run, go through the error message above the canvas and
click on Diagnostics for more details.
Add views and modifiers from the library

You can lay out much of your SwiftUI user interface with standard views and
modifiers that you drag from the library to either the canvas or your source
code.

1. In the Project navigator, choose a file that uses SwiftUI, then tap on
the Library button (+) located in the toolbar.

The library will open in a separate window. You can alternatively option-
click the button to launch the library in a persistent window.

2. Click on the buttons inside the toolbar of the library to switch
between the different libraries.

3. Drag an element from your library to the source editor, canvas or
inspector.

If you drag an element to the canvas, you will see a valid destination
showing in blue and a popover with information will also appear below. If
you drag an element to the source editor, the code will shift to show where
the code will be inserted.

Regardless of where the changes have been made, Xcode keeps your source
code and user interface layout in sync.

Edit user interface element attributes
There are many ways you can use to edit user interface element attributes.

Tip: Learning SwiftUl becomes easy when you edit attributes in the
inspector and view the resulting changes to the source code.

e Command-click the structure in the code or element in the canvas, select
“Show SwiftUI Inspector” from the Action menu and then change the
attributes in the next pane.

Xcode helps to keep the layout and source code in sync.

. Select “View,” tap on “Inspectors” and choose “Show Attributes
Inspector,” then change the attributes in the Attributes inspector that
appears on the right. Xcode will update the source code.

o Input the code in the source editor. Xcode updates the preview.

CHAPTER NINE

Connecting codes with the user
interface using the Interface Builder
workflow

The Interface builder can be used to connect your codes with your app’s
user interface.

Note: For Swift apps, the SwiftUI can be optionally used to lay out your app
interface and see an interactive preview. iOS apps using SwiftUI also have a
LaunchScreen.storyboard file that you edit using Interface Builder.

Step 1: Create a storyboard or XIB project

To deploy Interface Builder, select XIB (macOS) or Storyboard as your user
interface when you create your project from a template. The project then has
a main user interface file (a MainMenu.xib file or Main.storyboard,
Interface.storyboard) that features the view controllers and views that appear
when your app first launches. For iOS apps, there is also a
LaunchScreen.storyboard file for the view that is shown while the app is
launching.

Step 2: Open a user interface file

In the Project navigator, choose a user interface file and the file will be
opened in Interface Builder in the editor area. The views will appear in the
canvas area and the structure of the underlying objects will appear in the
outline view. Simply tap on the toggle () below the canvas to expand the
outline view if it collapses. The first time you launch a storyboard file, you
will see the layout appearing in a default device configuration that you can
change later.

To launch the Interface Builder in a separate window, simply control-click
the user interface file, then select “Open in New Window” from the pop-up
menu.

Open the library.

Select a user interface file. Outline view Canvas Select an inspector.

[] ® » A:) B8 HelloWorld: Reddy | Today at 4:56 PM + & 0 O N

mooeom v o

B FTAAC=ED BB < B Hetloworid Y im > [) [& YE) 1 view) [L] Label

v |8 Helloworld { v [view Controller Scene ! ! Laber
[Helloworld v () View Controller Text Plain
= AppDelegate.swift v [view 7 Label
A i,] sate Area Color M Default (Label Color)
s ViewController.swift [L] Label =
Font System 40.0 @<
Main.storyboard M [B]Button :
T » [Constraints Dynamic Type :utoﬂlal\cal\il\ﬁ]tfs Font
© i = = = =B
LaunchScreen.storyboard ;J‘ FERL Respantie: A
Exit i [~
Info.pliat ‘«) Sn‘)r board Entry Peint e L
r i .
¥ | HelloWorldTests Y ¥ Behavior @ Enabled
+ HelloWorldTests.swift Highkghisd
Info.plist g__%eg Baseline Align Baselines B
Y HelloWorldUITests Line Break Truncate Tail
HelloworldUITest: ift Button : B
x| HelloWarlcUlTests. swr Autoshrink Fixed Font Size
Info.plist
Tighten Letter Spacing
» . Products
Highlighted W Default
Shadow Default
Shadow Offset 0l -3
Width Height
= View
Content Mode Left
Semantic Unspecified
+ ® O | &] i View as: iPhone 11 Pro Max («C nR) { Tag 02
Show or hide the outline view.’ |Change device configurations.

Step 3: Add controls, images, and other Ul objects

Drag all of the objects you need in your user interface to the canvas from the
library. To open the library, tap on the Library button (+) in the toolbar, then

o)
click the Image (), Objects (@), or Color library (®) to find the

objects that you want to drag.

In the canvas, the objects can be repositioned by dragging them to anywhere
you want them using the gridlines to help center and align the objects. To
change text (for instance, to edit the title of a button), tap twice on the object
and then write the text.

Inspectors can also be used to edit objects. Choose the object on the canvas
and tap on the Attributes inspector (EI'}). You can also tap on the Size

inspector (E) to access information about the size and position of a view.

Drag an object from the library.

Release the object on the canvas. Enter text to filter the list. Open the library.
3 A, HelloWorld) i iPhone 11 Pro Max | Helloworld:[Ready || Today at 4:18 PM + & =y B
& Helloworld } [HelloWorld)+ Main.storyboard) +| Main.storybo|rd (Basg)) No Selection Do @e®E Y I O
v View Controller Scene
¥ () View Controller T —|
v O view 4 L
[E] sate Area Q) =B
First Responder
Exit - o
=3 Storyboard Entry Point @ E}] @

Label | Button 12 Text - Label
UlLabel: Presents read-only text

= - u - A label can contain an arbitrary amount of text, but UlLabel

7N may shrink, wrap, or truncate the text, depending on the size
of the bounding rectangle and properties you set. You can

I control the font, text color, alignment, highlighting, and

shadowing of the text in the label.

_ y

S)] View as: iPhone 11 («C rR) 48%

For macOS apps, add items to the Touch Bar. Drag any NSTouchBar object
from your Object library to a window or custom view. Drag
NSTouchBarltem objects to the Touch Bar and connect the items to your
code. Then you can preview the items in your NSTouchBar object, test the
items using a real Touch Bar on a Mac, or if you don’t have one, using the
Touch Bar simulator.

Step 4: Connect views and controls to your code

It is very easy to write the code that implements objects’ behavior as you add
them to the user interface. To access the implementation file for the view
controller, select Automatic followed by the filename of the class
implementation in the jump bar. Then visually connect your code to the user
interface object using the Interface Builder.

If you wish to reference an interface object in your code, simply add an outlet
connection by control-dragging from the object on the canvas to the code in
the source editor where property declarations are allowed. To add an action
method that’s called when the user interacts with a control, Control-drag from
the control to the method implementation section of the implementation file.

You can remove and modify connections by selecting and either selecting
View > Inspectors > Show Connections Inspectors to open the Connections

inspector (':'}:'), or control-click to launch the connections panel.

Step 5: View the Ul using different device configurations and create
variations as needed

First utilize the “View as” button below the canvas to view the user interface
using different device configurations that you think most of the end-users of
your app will be using. Then create variations of the user interface by tapping
on the “vary for trait” at the bottom right.

Show or hide the device configuration panel.

o0 e »p A) B8 HelloWdpid: Ready | Today at 4:21 PM 2 =12 & = = E
B < B Helloworld) [HelloWorld ain.storyboard)+ Main.storyboard (Base)) [~| View Controller Scene) {_} View Controller ¢ > =
v View Controller Scene
v View Controller
v [View

[:I Safe Area
[L]Label
\8 Button
) First Responder
Exit
—> Storyboard Entry Point

[i] View as: iPad 10.2" (7th generation) («R nR) 40% @B o tal A
A %
- % I I I I I ‘ I I l I I | I Vary for Traits
® | Davice Interface Style Orientation Layout -
|Choose a device configuration. Create a user interface variation.

Step 6: Define layout constraints for your app’s user interface

Use Auto Layout constraints to set rules for how the objects should scale and
reposition if you observed that the objects in the canvas don’t appear in the
location you expect when you change the device configurations. You can add
distance and alignment, and size and position constraints. Then use the tools
to find and resolve Auto Layout errors and warnings.

Select an object on the canvas.

e e » M A SR HelloWorld: lleady | Today at 4:23 PM 2 + il l] O

| ¢ & Helloworld) i H...dd) [M...rd) B M..e)) (5] Vie.e) (O vi.er) [view) [B] Button € A >

[D@28 ¢ E O

Scale Unspecified

v View Controller Scene Sl
v View Controller 1 Type System
v [view S — State Conflg Default
Ei Safe Area .
’T Labat Title Plain
E: Button Button
fﬁ First Responder Font System 40.0 m 3
i
[exit Text Color W Default
—> Storyboard Entry Point
Shadow Color Default
Image
~
L Label Add New Alignment Constraints B -
> & aD el o Symbol Configuration
— Buttord iration Unspecified
Oo—o0—~0
v
<

Neight Unspecified

sibility Adjusts Image Size

Offset 02 0%
Width Height
Reverses On Highlight

—— |_ 1] Horizontally in Container | i AR EIE e ST

Highlighted Adjusts Image

L [vertically in Container 0 ST
Add 2 Constraints Break Truncate Middle K
| Dragand Drop Spring Loaded
® '] View as: iPhone 11 Pro Max [(«C 1R) 2B ol sl &
fanteal
Center horizontally and vertically. Add the constraints. Open alignment dialog.

Step 7: Design the user interface of your app with storyboards

Graphically lay out the user’s path through your app in a storyboard
consisting of scenes, segues that connect the scenes, and controls to trigger
the segues. First add scenes and views, then add segues between them.

Container view controller scene
Relationship between a container and child
Content view controller scene

Segue between scenes

[] ®) A MasterDetail) i iPhone 11 Pro Max | MasterDetail: Ready | Todayfet 5:21 PM + &> | B = 1 |
= [

8 < & MasterDetail) [MasterDetail) [l Main.storyboard) || Main.storyboard (Base)) [| Master Scene } () Mastfr

v Master Scene

» Master
) First Responder I
L o

Exit — —
Reltionship *roct view controler.. O Y r R .

Master

v Detail Scene
Prototype Cells.

Title

v Detail
»] view
< | Detail
1) First Responder
Exit
v Split View Controller Scene
Split View Controller
] First Responder
Exit
= Storyboard Entry Point - Navigation Controller — —@— Navigation (
Relationship “master view controll...

v Master Scene Table View
v Master
»] Table view
< | Master
[First Responder
Exit
Show Detail segue “showDetail” to.

v Navigation Controller Scene

v Navigation Controller
'Nawgalion Bar
B First Responder & — 4 b — D b s— 4
Exit
Relationship "root view controller”...

] View as: iPhone 11 (.C R) 53% -} PR o &

@

Step 8: Preview your layout

The assistant editor can be used to preview your layout in different device
configurations. For iOS apps, switch between portrait mode and landscape
mode, then select different device families. For macOS apps, you can choose
either the Dark Appearance or Light Appearance to preview the layout. If you
add localization to your app, you can choose a language from a pop-up menu.
If you don’t have localization yet but want to see how your layout handles
different string lengths, choose Double-Length Pseudo Language from the

menu.

Show the preview.

@ ® P /%) J# iPho...Max HelloWorld: Ready | Today at 5:34 PM + O Ol &
88 < B Helloworld > B HelloWorld) [+) Main.storyboard) [+] Main.storyboard (Base)) [Z] View Controller Scene 3 () View Controlier > [view) [B] Button =[
v View Controller Scene
v View Centroller
v D\liew
[] safe Area R
\f} Label
[B]Button
b |5 Constraints
) First Responder
Exit
—> Storyboard Entry Point
N Label Label Label LABEL LABEL
Buftort Button Button BUTTON BUTTON
C [=
®] View as: iPhone 11 Pro Max (+C nR) 5 Double-Length Pseudolanguage
Add another device preview. Hover and click to change Choose a language.

orientation.

Add user interface objects to the canvas

Much of your user interface can be laid out with Views, standard windows
and controls from the object library. The objects you found in the library
have been tested to work properly and meet Apple’s human interface
specifications.

1. In the Project navigator, click on the user interface file and then open
the library by clicking on the Library button (+) in the toolbar. The
library will be launched in a separate window. Alternatively, you can
option-click the button to open the library in a persistent window.

2. In the library toolbar, choose the Object library (@) and then
drag any object to the canvas from the library.

In the canvas, the Interface Builder will highlight a valid destination in
blue. Properly align and reposition your object by using the guidelines.

You can alternatively drag the object to the outline view. (Show the
outline view by clicking on the Show Document Outline button (&
) located at the lower-left corner of the canvas.)

3. In the inspector area, edit the attributes of the object.

Connecting objects to codes

Add an outlet connection to send a message to a Ul object

To allow your code to be able to send messages to a user interface object,
simply add a connection from the user interface object to a special property in
your class called an outlet. For instance, if you want to set the text of a label
programmatically, simply add a connection from the label in the user
interface file to a label outlet in your code. The interface Builder both adds
the declaration for the outlet to your class and connects the instance of your
class to the outlet.

1. In Interface Builder, launch the assistant editor by choosing View, tap
on Assistant Editor and select “Show Assistant Editor.”

2. Deploy the jump bar located at the top of the assistant editor to
choose the implementation file of the object that will send the
messages.

3. Control-drag from the object, in the outline view or in the canvas, to
the code in the assistant editor.
Xcode will tell you where you can insert an outlet declaration in your code.

4. A popover will be displayed where you can choose Outlet from the
Connection menu, fill in the property name, and select a storage
reference type.

Use a reference type of strong for objects that are not implicitly retained
such as gestures and array controllers.

The instance of the class that will be connected to the outlet appears in the
Object field.

Connection | Outlet | —— Choose Outlet.

Object View Controller

Name Enter a property name.

Type UlLabel v
Storage | Weak ~| — Choose a reference type.

Cancel

5. Click Connect.

Create connection.

Interface Builder will add the declaration for the outlet to the class. Outlets
are defined as IBOutlet properties. The IBOutlet keyword informs Xcode
that this particular property can be connected to your user interface file.

6. Utilize the outlet property in your code. Now, you can get and set the
properties of the object in your code.

Add an action connection to receive messages from a Ul object

Your object will receive messages from a control if the object is the target of
an action specified by the control. For instance, when the user clicks on a
particular button, an action message is sent by the button to a target. When an
action connection is added, the interface Builder will add an action method to
your class and sets the target for the control to an instance of your class. Then
you are responsible for implementing the action method.

1. In Interface Builder, launch the assistant editor (click on View, tap
Assistant Editor and click on Show Assistant Editor).

2. Use the jump bar located at the top of the assistant editor to choose
the implementation file of the object that you want to receive the
action message.

3. Control-drag from the control, in the outline view or in the canvas, to
the code in the assistant editor.

Xcode will always indicate the part where you can insert an action method in
your code, or if you hover over a method, Xcode will tell whether it can be
the action for the target.

4. In the displayed popover, select Action from the Connection menu,

input the name of the action method, and select an event from the
Event pop-up menu.

Connection | Action 2] —— Choose Action.

Object View Controller

Name sayHelld Enter an action method name.
Type AnyObject ﬂ
Event | Touch Up Inside

Arguments | Sender

Create the connection.

Cancel Connect

5. Click Connect.

In the implementation file, Xcode will insert a code snippet for the action
method. The IBAction return type is a special keyword showing that you can
actually connect the instance method to your user interface file. Xcode will
set the target of the control to an instance of your class (for instance, a view
controller object), and sets the control’s action to the action method selector.
The action message will be set to your object at runtime when the specified
event occurs.

6. Implement the action method. It is your duty to write the code for the
action method.

Connect from an object to code

Connecting an object to source code requires you to add the declaration in the
outlet and the class or action connection at the same time. An object can also
be connected to an existing method in the source code.

1. In Interface Builder, open the connection panel by control-clicking
an object.

2. In Interface Builder, launch the assistant editor (click on View, tap
Assistant Editor and click on Show Assistant Editor).

3. Use the jump bar located at the top of the assistant editor to choose
the implementation file for the outlet or action.

4. In the connections panel, drag from a connection well (open circle on
the right side of an outlet or action) to the code in the assistant editor.

Xcode will always indicate the part where you can insert an action method
in your code, or if you hover over a method, Xcode will tell whether it can

be the action for the target.

Connect from one object to another

1. In Interface Builder, open the connection panel by control-clicking
an object.

2. In the connections panel, drag from a connection well to the other
object in the outline view or canvas.

Xcode will always indicate the part where you can insert an action method
in your code, or if you hover over a method, Xcode will tell whether it can
be the action for the target.

3. Select an event for the action if you drag from an action method in the
displayed dialog.

CHAPTER TEN
Build and run your app

You can use real devices or simulated devices to build and run your
applications. For macOS applications, your Mac will be the device for this

purpose. When you run your app through Xcode, you will see a debugging
session opening automatically in the debug area.

1. From the scheme pop-up menu in the toolbar, select a scheme.

Xcode will build a scheme for each target in your project if you have created
a project from a template.

v #az HelloWorld > Default app scheme

Edit Scheme...
New Scheme...
Manage Schemes...

2. Select a run destination from the scheme pop-up menu.

The run destination is the one that will determine where your app will run
after it has been built. For macOS apps, one default destination called My
Mac exists. For iOS, tvOS, and watchOS apps, you can choose a device
connected to your Mac, a simulated device, or a wireless device paired to
Xcode.

f iPhone —— Choose a real device.

/" Generic iOS Device —— Choose a generic device to
build using platform SDKs.

8 iPad (5th generation)

% iPad (6th generation)

@ iPad Air (3rd generation)

@ iPad Air 2

@ iPad Pro (9.7-inch)

@ iPad Pro (10.5-inch)

@@ iPad Pro (11-inch)

iPad Pro (12.9-inch)

@@ iPad Pro (12.9-inch) (2nd generation)

@@ iPad Pro (12.9-inch) (3rd generation)

iPhone 6s I~ Choose a simulator of a

@8 iPhone 6s Plus device family.

@ iPhone 7

@8 iPhone 7 Plus

8 iPhone 8

@& iPhone 8 Plus

8 iPhone SE

@ iPhone X

@ iPhone Xs

@ iPhone Xs Max
v @ iPhone Xr

Add Additional Simulators... —— Customize simulators.
Download Simulators...

3. Build, run and debug your app by clicking on the Run button in the
toolbar.

The “View activity” area in the toolbar displays the progress and result of
your app building. If the app building has not been successful, you will see
“Failed” bolded in the “View activity” area.

Configure editor area.

|Run app. lChoose scheme. View activity. Open Iibrary.l
T 1T 1
[] o | #% HelloWorld) @l iPhone Xr | HelloWorld | Build HelloWorld: Failed | Today at 12:01 PM 2 @2 + <2 | Y o R Y
|Stop app. Activity indicators Showr/hide areas.

On the other hand, if your app building has been successful, your app will
open on the simulator or on the device and a debugging session will be
opened in the debug area.

4. If you get a warning message or an error, tap on the corresponding
red or yellow icon in the “View activity” area.

The issue shows in the Issue navigator displaying the line of code where the
error or warning occurred. (The Behavior preferences can be used to
customize the behavior of some alerts.)

5. There is a stop button in the toolbar that you can use to stop a build
process or to put a stop to the debugging session.

6. If the app building is successful and the app launches, the debug area
can be used to control and inspect your running application.

You can only use a real device or a generic device as the run destination to
create an archive for distribution. You will not be able to create an archive
with simulator SDKs.

You can rebuild all the files in a project by choosing “Product,” select “Clean
Build Folder,” and then choose Product > Run or Product > Build For >
Running.

Run an app on a simulated device (i0S, tvOS, watchOS)

For iOS, tvOS, and watchOS apps, your app can be run and tested
comfortably with a simulator—a simulator is a developer tool built with
Xcode that simulates devices.

1. From the scheme pop-up menu in the toolbar, select a scheme and a
device family under [Platform] Simulators.

Optionally, you can configure your desired device family by clicking on the
“Add Additional Simulators.”

fl iPhone —— Choose a real device.

/> Generic iOS Device —— Choose a generic device to
build using platform SDKs.

@ iPad (5th generation)

8 iPad (6th generation)

% iPad Air (3rd generation)

i iPad Air 2

@ iPad Pro (9.7-inch)

@ iPad Pro (10.5-inch)

@ iPad Pro (11-inch)

@8 iPad Pro (12.9-inch)

iPad Pro (12.9-inch) (2nd generation)

@@ iPad Pro (12.9-inch) (3rd generation)

@8 iPhone Bs - Choose a simulator of a

@ iPhone 65 Plus device family.

8 iPhone 7

@8 iPhone 7 Plus

% iPhone 8

8 iPhone 8 Plus

@ iPhone SE

iPhone X

iPhone Xs

8 iPhone Xs Max
v i iPhone Xr

Add Additional Simulators... —— Customize simulators.
Download Simulators...

If you are building apps for watchOS, select the WatchKit App target as a
scheme, and select an Apple Watch simulator.

D No devices connected to 'My Mac'...
]‘ Generic watchOS Device

@8 Apple Watch Series 4 - 40mm
v ¥ Apple Watch Series 4 - 44mm

Add Additional Simulators...

2. Tap on the Run button in the toolbar.

If the app has been built successfully, the Simulator will open and run your
app in the simulated device. For watchOS apps that need an iOS app to
function, you will see the Apple Watch and the iOS simulator.

Alternatively, your apps can be run on real devices connected to your Mac or
on a wireless device paired with Xcode.

Run an app on a device

All iOS apps, tvOS apps, and watchOS apps need to be code signed using a
provisioning profile (A provisioning profile is a system profile that can be
used to launch one or more apps on devices and use certain services.) to
launch on a device. macOS apps that utilize certain app services need to be
signed to launch on your Mac too.

If you activate automatic signing (recommended) — (Automatic signing is a
target setting that enables Xcode to manage signing assets for you. The
signing settings are found in the General pane under the heading signing in
the project editor. To activate automatic signing, choose “Automatically
manage signing.”), Xcode will create the necessary signing assets for you in
your developer account. If the team belongs to a developer program, you will
be required to explicitly register the device before you will be able to run the
app. For macOS apps, you register the Mac running Xcode.

Before you continue, add your Apple ID account and assign the target to a
team. Multiple ID accounts can be added and the account can belong to
multiple teams. If you have not added your Apple ID, follow the steps below
to do so;

1. Tap on the Add button (+) located in the lower-left corner.

2. A page will be displayed where you can choose Apple ID. Click on
“Continue.”

3. You will get another page where you can input your Apple ID, tap
“Next” and you will be able to enter your Apple ID password on the
next page. When you are done, tap “Next.”

If the registration is successful, your Apple ID will be shown in the
column on the left and the teams that the Apple ID belongs to will appear
on the right. The table displays the team name and your program role. If
you have not yet joined the Apple Developer program, your team name
will be your first name and last name and the name “Personal Team” will
be enclosed in front of your name. Refer to the previous chapters on how
to join and register for the Apple Developer program.

On macOS 10.11 and later, if you have previously enabled the two-step
verification for your Apple ID, you may be required to enter an additional
verification code. On earlier operating systems, you may be required to

input an app-specific password.

4. Tap on the “Create Apple ID” in the lower-left corner of the page if
you don’t have an Apple ID. Once an ID has been created for you,
repeat these steps to add your Apple ID.

Follow the steps below to run an app on a device;

1. For iOS, tvOS, and watchOS apps, connect the device to your Mac.
For watchOS apps that are dependent on an iOS app, connect an
iPhone that is paired with an Apple Watch.

You may have to actually wait for the Xcode to enable the device before it
shows in the scheme menu for the next step. For iOS and watchOS apps,
unlock your device’s screen and trust the computer.

2. Select a scheme and your device under the Device section from the
scheme pop-up menu in the toolbar.

For watchOS apps, select the WatchKit App target as your scheme and the
Apple Watch as your run destination. For watchOS apps that depend on an
iOS app, both the name of the Apple Watch and iPhone will appear in the
menu.

For macOS apps (including a Mac version of an iPad app), select My Mac as
the run destination. For the iPad version, choose an iPad device under
Device.

3. If the device shows under Unavailable Device in the scheme menu,
move the mouse over the device, check the reason for this, and fix the
problem.

For instance, if the operating system version is lower than the deployment
target, improve the operating system version on the device by upgrading the
OS, or better still, you can change the deployment target in your project.

4. In the project editor, tap on “Signing & Capabilities,” display the
Signing settings and then tap “Register Device(s)” under Status.

The “Register device” button will not show if you had previously registered

your device.

5. In the toolbar, tap on the Run button.

If the product builds successfully, Xcode will install and launch your app on
the device.

Run UI tests and unit tests

You will be able to check the behavior and performance of your code by
running U test and Unit test using the Test navigator.

Note: If you had previously converted your scheme to use test plans, you
need to first choose the test plan from the Test Plan pop-up menu and then
follow the steps below;

Choose a test plan.
Hover over test, then click run button.

Hover over diamond, then click run button.

o0 e p) Wl Hellowdrid: Ready | Today at 4:32 PM + 0 =2 O
B ﬁ Q & O E A =] < ﬂ Helcho(Id} Hel\chrLdTesls) ™ HEIIUWDrIdTesls.st‘t)E HelloWorldTests ;El 18
Test Plan: HelloWorld (Default) & @testable import HelloWorld
v
elloWorldles e s > class HelloWorldTests: XCTestCase {
v @ HelloWorldTests [»]
B3 testExample() override func setUp() {
3 testPerformanceExample() £ // Put setup code here. This method is called before the

v [THelloWerldUITests 2 tests invocation of each test method in the class.

v [HelloWorldUITests
B3 testExample()

}

override func tearDown() {

3 testLaunchPerformance() 1 // Put teardown code here. This method is called after the
invocation of each test method in the class.
}
O func testExample() {
// This is an example of a functional test case.
+ @& [& // Use XCTAssert and related functions to verify your tests

Run all tests in a scheme or test plan: Click on “Product,” and then tap on
“Test.” You can alternatively click and hold on the Run button in the toolbar
and then choose Test.

Run all tests for a test target or test class: In the Test navigator, place your
mouse pointer over any test class or test target and then tap on the run button
that will show.

Run an individual test: Place your mouse pointer over any test icon or status
icon and then tap on the run button that shows.

View the source code for a test: Choose a test in the Test navigator to

access its code in the source editor.

Alternatively, you can decide to run tests from the source editor. Move your
mouse over a diamond icon that shows in the gutter next to a test class or a
test method and then tap on the run button that appears.

Add a test class to a project
You can expand the scope of testing in a project with new methods by adding

a test class.

1. Click on the Add button (+) located at the bottom of the Test
navigator.

2. Select “New UI Test Class” or “New Unit Test Class” from the pop-
up menu.

3. Input the class’s name inside the class field.

4. Select a superclass from the “Subclass of” pop-up menu. Classes are,
by default, subclasses of XCTestCase.

5. Tap on the language pop-up menu to select a programming language.

Choose options for your new file:

Class: MyUnitTestCIassI

Subclass of: XCTestCase ﬁ
Language: Swift s
Cancel Previous W

6. Tap on the Next button.

7. Choose a group, destination and test target.

8. Tap on the “Create button.”

A new class will be added to the target and will show in the Test navigator.
The new class contains templates for teardown, setUp, testExample, and
testPerformanceExample methods.

® ® J/ /N) @8 Finished running HelloWorld on iPhone 11 Pro Max + & O =2 [
B =2 a AN O = o @ |8 <« £ Helloworld } HelloWorldTests) « MyUnitTestClass.swift) [8) MyUnitTestClass = ™
Test Plan: Helloworld (Default) £ ” ;)
- 2 [/ MyUnitTestClass.swift
v HelloWorldTests 4 tests 3 // HelloworldTests
v [HelloWorldTests b o
B testExample() (/] // Created by Ravi Patel on 9/11/19.
3 testPerformanceExample() o 6 // Copyright © 2819 Ravi Patel. All rights reserved.
¥ () MyUnitTestClass 4 /"
@ testexample() 9 import XCTest
3 testPerformanceExample() Y
HelloWorldUITests 2 tests ¢{> class MyUnitTestClass: XCTestCase {
¥ [HelloWorldUITests .
0 testexample() o override func setUp() {
Ol e e aneal o // Put setup code here. This method is called before the
invocation of each test method in the class.
¥
override func tearDown() {
[T 1 // Put teardown code here. This method is called after the
invocation of each test method in the class.
¥
O func testExample() {
g // This is an example of a functional test case.
// Use XCTAssert and related functions to verify your tests
— produce the correct results.
+ @ Eges ‘ }
Select test class. Enter test code.

9. Select the new class in the navigator and enter the test code in the
source editor.

Add a test target to a project

You can expand the scope of testing in a project with new methods by adding
a test target.

1.

o

Click on the Add button (+) located at the bottom of the Test
navigator.

Select “New UI Test Target” or “New Unit Test Target” from the
pop-up menu.

Write a name for the target inside the Project Name field.

Select an implementation language from the Language pop-up
menu.

If you have many projects in your workspace, select a project from
the Project pop-up menu. The test target will be created in the
project you specify here.

6. From the “Target to be Tested” pop-up menu, select a target to run
tests on. This can be any target contained by the project except a
test target.

7. Activate any additional options, such as organization name, your
team and bundle identifier.

8. Tap on the Finish button.

A new test target with a new class will be added to the project and will show
in the Test navigator. The new class contains templates for teardown, setUp,
testExample, and testPerformanceExample methods.

9. Choose the new class in the navigator and input the test code in the
source editor.

View Ul test and unit test reports

The report of your Unit test and UI test run directly in the main window can
be accessed. You can add attachments to the report and control the structure
of the reports by using the XCTest framework.

1. In the Project navigator, choose a test source code file to launch it in
the source editor.

2. In the source editor, Control-Click on a test status icon in the gutter,
then select “Jump to Report” from the pop-up menu.

The test report will be displayed in the editor area on the right.

3. You can reveal an activity or test by clicking on the disclosure
triangle.

Utilize the XCTest activities APIs to group subtasks.

4. To view a screenshot, launch the assistant editor and choose the
screenshot attachment in the report.

Utilize the XCTest screenshot APIs to add screenshots to the report.

Creating and distributing a watch-only app

Most Apple Watch’s apps need a companion iOS app to work; that is Watch
users must find a way to connect their iPhone to their Watch for full

functioning. Nonetheless, you will still be able to create a watch-only app
with no companion app and then offer such an app for sale on the App store
on Apple Watch. Watch-only applications are also made available on the i0OS
App store.

Step 1: Create a watch-only app project

Choose the Watch App template under the watchOS platform when you are
creating your Xcode project. You will get a page where you will have the
option to include complication or a notification screen.

Your project will contain a [Project Name] target that has project settings but
no files. The embedded WatchKit extension target and WatchKit extension
apps must have the same bundle ID prefix as the [Project Name] target.

Step 2: Run the watch-only app from Xcode

From the scheme menu in the toolbar, select a real device or an Apple Watch
simulator. Since you have created a watch-only app project, you won’t see
iOS simulators and devices in this menu. Tap the run button once you
choose a simulator, the Apple Watch simulator will open without a
companion 10S app.

Step 3: Distribute and test the watch-only app

You can use Testflight to distribute a beta build version of your watch app or
distribute the app to registered devices. Once you create the archive, choose
the archive in the Archives organizer and in the inspector, view details about
the archive. Since you built a Watch-only app (with no iOS companion), the
watchOS state will be “iOS app will be thinned.” For a watchOS app that has
a companion iOS app, the WatchOS state will either be “iOS app is required”
or “iOS app is optional.”

Step 4: Distribute the watch-only app through the App Store

Since what you have built is of great quality, the next thing (if you want) is to
distribute your product through the App store. Go to “Add WatchOS app
information” in the App Store Connect Help to create a watch-only app
record. In the last page when you are uploading the product to App Store
Connect, you will be able to review the targets. For watch-only apps, the
targets are: [Project Name], [Project Name] WatchKit App, and [Project
Name] WatchKit Extension.

If you select Ad Hoc, Enterprise, or Development as your distribution
method, you can select an Apple Watch device variant as the distribution
option.

Support running a watchOS app without an iOS app

For projects you created using the “iOS App with Watch App” template,
support can be added for running the WatchOS app without the iOS
companion app. To make sure that your app runs independently of the iOS
companion app, go to Creating Independent WatchOS apps.

This feature has been enabled by default in Xcode 11 and Xcode 12.

1. In the project editor, select the [Project Name] WatchKit Extension
target and then tap on General.

2. Under Deployment Info, check the “Supports Running Without iOS
App Installation” box.

CHAPTER ELEVEN
LOCALIZING YOUR APPS

Localization is the steps involved in making your apps adaptable to many
languages. In App Store Connect, you will be able to select territories where
you want your apps to be available on the App store. To select territories
where you want your apps to be available on the App store, follow the steps
below;

Note: All countries of the world are selected here by default, but you can
deselect countries where you don’t want your apps for sale.

1. Select your app from “My Apps,” A page will be launched under the
“App store” tab as shown below.

2. Tap on “Pricing and Availability” from the sidebar. You need to set
pricing for your app before you will be able to select countries where

you want your app to be available.
3. Tap “Edit” under Availability.

4. You will get a dialog where you can choose the regions or countries
where you want your product to be available in;

e Select all countries or regions: Select All.

e Choose specific countries or regions: Click on the checkbox next to the
regions or countries that you want to include and then un-select the
checkbox next to the countries or regions you don’t plan to add.

e Automatically add new App Store regions or countries: Select the New
Countries or Regions checkbox that you see in the upper-left corner.

Tap on “Done” located at the end of the dialog and then select
“Save” from the upper-right end.

Once you have successfully added territories to your app, the app can also be
localized in XCode to enable users utilize the app in their respective local
language, culture and region.

To prepare the application for proper localization, you will have to add the
languages that you intend to support first. Use the below steps as guides to
add languages to your app;

Adding languages supported by apps in the
App Store

1. Choose the project in the project navigator, and then tap on “Info.”

2. Under Localizations, click on the Add button (+) and then pick a
language from the displayed pop-up menu.

The displayed pop-up menu features the language name with the language
ID in parenthesis—for instance, Japanese (ja), German (de), and Arabic
(ar). For dialects or scripts, the region will appear in parenthesis—for
instance, German (Switzerland). The Other submenu (located at the lower
end of the menu) has more regions and languages.

e0e » 7 ..) W8 iPhone XR Finished running Find Your Dream Home on iPhone XR /) 6 {) E @ & | Y e [|

B 2 Q AN © = o B8 [& Find Your Dream Home <>
info Build Settings
¥ Deployment Target
i0S Deployment Target 12,0 B
= Assets xcassets ¥ Configurations
LaunchScreen.storyboard
Name Based on Configuration File
Info.plist
- f
CiomeE piiit » Debug No Configurations Set
¥ Bl » Release No Configurations Set
» Home.swift
b H +
lome Images
=) 81331686.png Use Release for command-line builds
=) 81343562.png
= 81402336.png ¥ Localizations
=) 81403094.png
Language Resources
» {1 Products
English — Development Language 2 Files Localized
. T

Use Base Internationalization

+ | @ OR

3. In the screen that shows, deselect the resource files that you don’t
plan to localize for this language, and then select Finish.

Once a language has been added successfully, you can proceed to mark the
resources that you wish to vary for this language.

Make a resource localizable

Any type of resources can actually be localized, including audio files and
images. For instance, an image that is culturally sensitive for a particular
region or language can be added. Proceed with below steps;

1. Choose the resource in the Project navigator.

2. Select “Localize” in the inspector under Localization.

®
Identity and Type

Name 81331686.png

Type Default - PNG Image E

Location Relative to Group B
81331686.png]

Full Path /Users/gita/Desktop/
GitHubPie/Find-Your-Dream-
Home/Find Your Dream
Home/Home Images/
81331686.png [

On Demand Resource Tags

Image Properties
Dimensions 275 x 189 pixels
Resolution --
Color Space RGB
Alpha Channel Yes

Localize... .

Target Membership
Find Your Dream Home

Localization

3. You will get a dialog box where the development language for the
resources can be selected. Click “Localize.”

4. In the inspector, under Localization, choose the languages that you
desire for the resource to be localized in.

Once you have been able to localize your resources, you can then export
localizations for those languages that you want to support and give the
language-specific Xcode Localization Catalog (xcloc) folders to localizers.

Export localization

1. In the Project navigator, select the project and then select Editor and
tap on Export For Localization.

2. You will be shown an export dialog where you will input a suitable
name for the folder, choose a location, and select the languages you
plan to add under Localizations and then tap “Save.”

You can continue building your app in the base language and lock views
optionally while you await localization, and you can then import
localization (which is the xcloc folders that have actually been translated).

Proceed with the below steps to lock views;

Lock a single view
1. Choose a user interface file in the Project navigator.
2. Choose the view in the Interface Builder.
3. In the Identity inspector, choose a locking level from the pop-up
menu under Document.
e Inherited - [(locking level)]: Utilize the locking level of the parent
view.
e Nothing: Don’t lock any property. All the properties will be editable.
e All Properties: Lock all properties.

e Localizable Properties: Lock localizable properties, like user-facing
text and size.

. Non-localizable Properties: Lock non-localizable properties (make
user-facing text and size properties editable).

6] ¢ B @
Custom Class
Class Q n
Module p
Identity
Restoration ID
User Defined Runtime Attributes
| Key Path Type Value

+
Document
Label
X
Object ID PJK-rd-kBP
Lock Inherited - (Nothing) ‘
Localizer Hint
Accessibility Hide
Accessibility @ Enabled
Label
Hint
Identifier

Ensure that your app is duly tested in all of the language that you have
approved. After you have successfully imported localizations, you can then
test your app in the regions and the languages you have included.

CHAPTER TWELVE

GETTING YOUR APPS TO THE

STORE
App thinning (For i0S, tvOS and watchOS)

All of the apps that are submitted to the app have been tailored — with
minimal footprint - to the capability of the users’ devices and their devices’
operating system. This is the guiding principle with which the App Store and
operating system optimize the installation of iOS, watchOS and tvOS apps.
This selective optimization, called app thinning, gives users the chance of
creating apps that use almost all of the features of the device hosting them,
accommodate any future updates that can be done to the app and also occupy
lower disc space on the device. Better user experience is achievable with
faster app download and creation of more disc spaces for other contents and
apps. It is not good if an iOS app takes all of the disc space on users’ iPhone
to install.

Slicing (for iOS, tvOS)

Slicing is the act of building and delivering different forms of the app bundle
for different operating system versions and target devices. A variant of an
app features only the resources and executable architecture that are essential
for the target operating system version and device. As time goes on, you can

always update and provide a full model of your application on the App store.
Different variants of the apps you sent to the Store will be created and
delivered by the App Store based on the operating system version and the
devices supported by your app. The assets catalogs can be used to allow the
App store choose images, GPU resources and other data appropriate for each
variant. When an app is installed by the user, the precise app variant that will
be supported by the user’s device and operating system will be downloaded
and installed for the user without the user having to worry about anything.

During app building, Xcode simulates slicing for you so that you can locally
create and test different app variants. Xcode helps to automatically slice your
app when you make and run your app on a real device or in a simulator.
When you create an archive, the full version of your app will be included in
the Xcode, and various versions of your apps can be exported from the
archive.

Note: Only devices running iOS and tvOS 9.0 and later will support sliced
apps. For users whose operating system is not OS 9.0 and above, the App
store will bring universal variants for them. Universal variants are also
delivered through apps bought in volume through the Apple School Manager
or Apple Business Manager, Mobile Device Management (MDM), or apps
downloaded by using iTunes 12.6 or earlier.

Bitcode

Bitcode is just an intermediate rendition of a compiled program. Apps that
you have put on App Store Connect that contain bitcode will be compiled and
linked on the App Store. When you include bitcode, your app binary (a file
that contains machine codes which are executable by the computer) can be re-
optimized by Apple in the future without necessarily uploading a fresh
version of that app to the App store.

Bitcode is the default for iOS apps, though optional. For apps that run on
watchOS and tvOS, bitcode is very much required.

To prevent Apple from accessing your App’s symbols, Xcode usually hides
your app’s symbols by default. You have the chance of including app
symbols when you submit an app to the App Store Connect. Including
symbols will enable Apple to give crash reports for your app when the app is
distributed with TestFlight or with the App store. You don’t have to upload

app symbols if you are planning to collect crash reports by yourself. All that
you have to do is to download the bitcode compilation dSYM files once you
have successfully distributed your app.

On-Demand Resources (i0S, tvOS)

On-demand resources are resources—Ilike sounds and images—that you can
tag with keywords and request in groups, by tag. These resources are hosted
on Apple server by the App store which also manages the download for you.
The App Store also slices on-demand resources, further optimizing variants
of the app.

On-demand resources help provide a topnotch user experience:

e Apps downloading become especially faster since apps sizes are now
smaller. This improves user experience.

. On-demand resources will be downloaded in the background, when
needed, while the users still continue to explore your app.

e The operating system removes on-demand resources when they are no
longer needed and when devices’ disk space is low.

For instance, an app may split resources into levels and asks for the next level
of resources only when it anticipates that the user will move to that level.
Similarly, the app can request In-App Purchase resources only when the user
makes the corresponding in-app purchase.

Note: You will need to host the on-demand resources by yourself if you
distribute your app to registered devices (outside of the App Store).

Distribute an app through the App Store

The processes involved in getting your apps to the end-users are not exactly
tedious and mind-boggling. Your apps must be tested and monitored on real
and simulated devices in the Xcode before you ever think of distributing
them through the App store. The apps that are worthy to be on the App store
are apps of good quality and they must be user friendly.

If you distribute your app using TestFlight, you need to carry out some of the
below steps before you can finally distribute the final product. Once the steps

have been completed, the app will be uploaded to App Store Connect.

Step 1: Prepare your app for submission

Navigate to “App Review” to review the guidelines concerning App Store
and human interface. The procedures you need to follow to prepare your
watchOS apps for submission have been discussed previously. For instance,
an app store icon must be provided. In case you have not included an app
store icon, you will be required to add an app icon to your iOS apps by
dragging an app icon to the App store iOS well found in the Applcon image
set.

Step 2: Enter additional details in the App Store Connect

You may have to input additional detail in the App Store Connect before you
can get to submit your app to App Review. Be careful with the settings you
choose here because you won’t be able to edit them once your app has been
submitted or released. For instance, you cannot edit the name of the app,
subtitle of app, private policy URL etc once your app has been uploaded.

Step 3: Archive, validate, and upload your app

In case you could not distribute your app using TestFlight, prepare your app
for distribution and create an archive of your app now, you can validate the
archive and fix some validation errors — if any- before you continue. Then
upload the app to the App Store Connect and exercise a little patience for the
app to pass App Store Connect validation tests.

Step 4: Submit your app to App Review

To submit the build to App Review, see the “Publish your app in App Store
Connect” below;

Publishing your app in the App store: Proceed with the guides below to see
how you can publish your app in the App store;

Choose your build

Each app has multiple models, and each app model may have more than one
builds. Select which app build you wish to submit when publishing your app

on the App store. Proceed with the guides below to select a build;

1.

5.

Scroll to “My Apps,” and select your app. The page launches under
the App Store tab.

In the sidebar, click on the app version under the platform you
decided to select.

On the right, move down to the Build section and then tap on the (+)
sign (add button) beside “Build.”

The Add Build dialog will appear where you can get to select the
build that you wish to submit.

Tap Done.

You will see the app icon, date & time of upload and the build string in
the Build section.

Build
BUILD UPLOAD DATE
A 2.31(8) Mar 24, 2020 at 4:28 PM

Build string

Version number

App Icon

6. Tap “Save” in the upper-right end of your screen.

Set pricing and availability

Setting price and availability for your app is among the core things you will
have to do once your app has been built successfully. You will need to set a
price for your app and choose territories where the app should be available
for people to buy (choosing app territories has been explained previously). If
you fail to choose territories for the apps, the apps, by default, will be made
available in all regions. Your app can also be published as a preorder.
Proceed with guides below to fix an appropriate price for your product;

1. Scroll to “My Apps,” and choose your app. The page launches under

the App Store tab.

2. Tap on “Pricing and Availability” in the sidebar. You will see the

price schedule (displaying the price) on the right.
3. From the price column, choose a price group from the pop-up.

Submit your app for review

To get your app available for review on the App store, you must submit the
app for necessary review. The App review process entails reviewing an app
submitted to the App store to ensure the app is reliable and is able to pass all
required tests. Follow these steps to submit your app for review;

Submit the app

1. Scroll to “My Apps,” and choose your app. The page launches under
the App Store tab. .

2. From the sidebar, choose the exact version of the app that you wish
to submit for appropriate review.

3. On the right, move down to the Build section to verify that the
correct build version for the app has been set.

4. You will receive a Version Release section where you will have the
chance to select a release option. You can pick from any of these;

e Release the app yourself: Choose “Manually release this version.”

. Automatically release the app after approval: Tap “Automatically
release this version.”

e Automatic release the app but no earlier than a specified date: Select
“Automatically release this version after App Review, no earlier than”
and input the appropriate date and time below the option.

While releasing your application as a first timer on the App store, you can
decide to publish the app as a preorder. Publishing your app as a preorder
will remove other release options automatically.

Under the “Phased Release for Automatic Updates” section, you can
choose to release app updates in phases if you are submitting a version
update.

Under the “Reset Summary Rating” section, you can opt to reset summary
rating if you are releasing a version update.

Click on the “Submit for Review” in the upper-right end.

If required, attend to the export compliance questions and then upload
encryption authorization documents. In the United States, all apps are
loaded on Apple servers and the apps are subjected to the United States
export laws.

Attend to all the questions on Content Rights. If your app has third-party
content, you need to confirm that you have the permission to utilize the
third-party content in each territory in which your app is made available.
It is your duty to determine and abide by the applicable regulations in
each territory.

Provide the details about advertising identifiers in the displayed
dialog.

Click on “Submit.”

Monitor your app status and attend to review issues

Once the app has been successfully submitted for review, its status will
change to “Waiting for review”. If your app has some issues, you will have to
check and then give an appropriate reply to the communication. It can take
your app about 24hours to be fully available on the App store after approval.

Request promo codes

Once your app has been approved successfully, you can request promo codes
to give to users before you finally make your app available on the App Store.
The users will be able to use the promo code when they want to buy your
app. The promo code can usually allow them to buy your product at a
discounted price. The promo code can be shared to the users by email.

ABOUT AUTHOR

Gary Elmer is a programming expert with passion for what he knows how to
do best. He has written a lot of beginner and technical guides on
programming languages, and will not stop teaching programming until the
baby in the womb can have an understanding of it.

Gary read computer science and engineering from the University of
Minnesota, USA. Currently, he is undergoing a Masters of Business
administration program.

	Copyright
	CHAPTER ONE
	WELCOME TO SWIFTUI
	THE SWIFT 5.3 PROGRAMMING LANGUAGE
	Variables and Constants.
	How to declare Variables and Constants
	How to name Constants and Variables
	How to print Constants and Variables
	The Swift Tuple
	The Swift Optional Type
	Error Handling in Swift
	Assertions and Preconditions

	CHAPTER TWO
	Basic Operators in Swift
	Assignment Operator
	Compound Assignment Operators
	Logical Operators
	Combining Logical Operators
	Explicit Parentheses
	Strings and Characters
	Special Characters in String Literals
	Working with Characters
	Unicode

	CHAPTER THREE
	Classes and Objects in Swift
	Initialization and Deinitialization
	Properties
	Observers
	Protocols
	Extensions
	Access Control
	Operator Overloading
	Generics

	CHAPTER FOUR
	Introduction to Swift’s Functions
	Defining and Calling Functions
	Function Parameters and Return Values
	Functions without Parameters
	Functions with Multiple Parameters
	Function Argument Labels and Names of Parameter.
	Default Parameter Values
	Function Types as Parameter Types
	The defer Keyword

	CHAPTER FIVE
	GETTING READY ON THE ROUTE TO DEVELOPING iOS 14 BASED APPS
	The Apple Developer program
	Enrolling in the Apple Developer Program

	CHAPTER SIX
	THE Xcode 12 and the iOS 14 SDK
	Installing Xcode 12 and the iOS 14 SDK
	Creating a project with Xcode 12
	The Xcode 12 Main Window (The Xcode 12 interface)
	The Debug area
	View threads in the debug area

	View variables in the debug area
	Managing project file

	Organize files in groups
	CHAPTER SEVEN
	AN INTRODUCTION TO Xcode 12 PLAYGROUND
	How to create a playground
	Edit a playground
	Run a playground
	Add auxiliary code to a playground

	CHAPTER EIGHT
	USING Xcode in SwiftUI Mode
	CREATING A SWIFT UI INTERFACE
	Run on a connected device

	CHAPTER NINE
	Connecting codes with the user interface using the Interface Builder workflow
	Add user interface objects to the canvas
	Connecting objects to codes
	Connect from an object to code

	CHAPTER TEN
	Build and run your app
	Creating and distributing a watch-only app

	CHAPTER ELEVEN
	LOCALIZING YOUR APPS
	Adding languages supported by apps in the App Store

	CHAPTER TWELVE
	GETTING YOUR APPS TO THE STORE
	App thinning (For iOS, tvOS and watchOS)
	Slicing (for iOS, tvOS)
	Bitcode
	Distribute an app through the App Store

	ABOUT AUTHOR

